

Hydrogen Dispersion in a fullscale road tunnel: Experimental results and CFD analysis

C. Melin, <u>E. Studer</u>, D. Forero, G. Bernard-Michel

LE2H Experiments in thermalHydraulics and Hydrogen safety Lab.

CEA Saclay, Université Paris-Saclay

D. Bouix, F. Sauzedde

LSP Fuel-cell System Lab. CEA LITEN, Université Grenoble Alpes

ICHS Conference, Québec City, September 19-21, 2023

CONTEXT AND OBJECTIVES

- The Safety of Hydrogen powered Fuel-cell vehicles in confined environment
- Provide data on hydrogen dispersion issues for phenomena understanding, model verification and recommandations
- Part of HYTUNNEL-CS EU FCH-JU project (2019-2022)
- HSL had in charge experiments in reduce-scale tunnel
 and CEA had in charge experiments in full-scale tunnel

Hydrogen Dispersion in tunnel geometry

3

Hydrogen Dispersion in tunnel geometry

Hydrogen Dispersion in tunnel geometry

ICHS Conference, Québec City, September 19-21, 2023

5

Brief Litterature survey

Few experimental data in tunnel geometry

SRI Corral Hollow Experiment Test site

- Sato et al.: Effect of jet inertia is dominant for vertical upward release, fast dilution outside of the jet
- Houf et al. 3 TPRD opened simultaneously: 40% of hydrogen close to the ceiling during upward release, 100% of hydrogen under the chassis for downward release

CFD simulation data available

Ventilation and orientation of the release have not a huge influence of the size of the flammable cloud, TPRD diameter (2 to 6 mm) influences the size of the flammable cloud.

No full-scale data. Limited number of measurements suitable for CFD code validation

Experiments

Tunnel Selection

2 lanes horse-shoe type disused road tunnel About 500 m long

3.6% slope

- 9 m width and 6 m height
- 2 different sections
- concrete vault
- rocky vault

Injection system and Instrumentation

Car = only a flat plate (1.9x4.5m) located 25 cm above the road, centrally located in the tunnel

Injection: at the rear of the car, different diameters and different orientations

Tanks: Type II 50 liters bottles and Type IV 78 liters tanks both filled with helium

P, T in the tank and in the injection pipe

10 vertical masts in the tunnel with Thermocouples and catharometers (32+8) (+oxygen electrochemical cells)

ICHS Conference, Québec City, September 19-21, 2023

Test Matrix

- 2 test campaigns:
- 2020 10 tests with 50 liters Type II tanks under 200 bar (already presented in ICHS 2021)
- 2021 3 tests with 78 liters Type IV tanks under 700 bar
- 1->2 P and mH2 effect
- 2->5 TPRD orientation
- 5->7 TPRD diameter

Type of test	Nb of test	Volum (liter)	Pressure (bar)	Configuration	Ø TPRD (mm)	Test number
He dispersion 2020	10	50	200	UP	2	n°3,4
				UP	0,5	n°5
				UP	3	n°6,7
				DW 90°	3	n°9
				DW 90°	2	n°11, 12
				DW 90°	1	n°13
				DW 90°	4	n°14

Type of test	Nb of test	Volum (liter)	Pressure (bar)	Configurati on	Ø TPRD (mm)	Test number
He dispersion 2021	4	50	200	UP	2	n°1
		78	600 to 700	UP	2	n°2
				DW 45°	2	n°5
				DW 45°	1	n°7

ICHS Conference, Québec City, September 19-21, 2023

2mm Upward

In the upper part of the tunnel

Test02 78I 70 MPa 2mm UP: Ceiling Helium Concentration

2mm Downward 45°

Test05 78I 70 MPa 2mm DW 45°: Ceiling [Helium]

ICHS Conference, Québec City, September 19-21, 2023

Numerical analysis

CFD computer codes and Meshes

Real Geometry

Two in-house computer codes

TRUST

LES

CFL=1

+/- 75 m

Injection B.C. ajusted to match the experimental results of Okabayashi 2019 regarding the concentration decay

Test 02: 2mm TPRD Upward

Test 05: 2 mm TPRD Downward 45°

along the upper part of the tunnel, both smaller concentrations

Conclusions and Perspectives

- Experiments
 - 2 mm TPRD leads to flammable cloud close to the release point without large extension along the vault
 - 45° to the rear orientation avoid large accumulation below the chassis
 - Database for CFD code validation
- CFD Analyses
 - Vertical upward releases: similar results for LES and RANS models, close to the experimental results with lower concentration (too diffusive)
 - Downward releases: RANS seems better than LES probably due to absence of mesh adaptation for the LES model (same mesh used in the vertical upward and downward releases)
- Perspectives
 - Refined analyses with the LES model after adaptation of the mesh for the 45° rear downward release

Thank you for your attention Questions?

