

CFD analysis of delayed ignition hydrogen releases from a train inside a tunnel

Tolias I.C.¹, Rattigan W.², Lyons K.², Koumroglou V.C. ³, Venetsanos A.G.¹

¹Environmental Research Laboratory, National Centre for Scientific Research Demokritos, Agia

Paraskevi, Athens, 15341, Greece

²HSE Science and Research Centre, Buxton, United Kingdom ³Core department, National and Kapodistrian University of Athens, Euripus Campus, Greece

tolias@ipta.demokritos.gr

- Hydrogen
 - Significant reductions in greenhouse gas emissions
 - Significant improvements in energy efficiency
- Accidental release in confined space \longrightarrow catastrophic consequences in the case of an explosion
- Computational Fluid Dynamics (CFD)
 - Attractive methodology for risk assessment: Accurate modelling of the geometry and the flow
- HyTunnel project¹

The aim was perform pre-normative research for safety of hydrogen driven vehicles and transport through tunnels and similar confined spaces

¹https://hytunnel.net/

Introduction

- Delayed ignition experiments that were recently performed by HSE in a model of a tunnel were simulated using CFD
 - Hydrogen release and dispersion
 - Delayed ignition (deflagration)
- The **aims of the work** are:
 - analyze the experiments using CFD models to gain a deeper understanding of the phenomena
 - investigate the impact of certain parameters, such as wind and ignition delay, on the results.
 - to verify the accuracy of our CFD model

Experiments

- Geometry:
 - Tunnel length: 70 m
 - Maximum height: 3.25 m
 - Horseshoe cross section
 - Case without congestion
- Forced or natural ventilation

CFD analysis of delayed ignition hydrogen releases from a train inside a tunnel

Experiments

Basic examined cases in this work

- Test 6: Only hydrogen concentrations are measured
- Test 25: Ignited case, overpressure measurements

Test Number	Ignited	Ignition delay	Congestion	Wind type	Wind range
6	No	—	No	Forced ventilation	0.8 - 1.5
25	Yes	8.5 s	No	Forced ventilation	1.0 - 1.6

Secondary cases

• Tests 55-57: Ignition delay effect

Test Number	Ignited	Ignition delay	Congestion	Wind type	Wind range
55	Yes	0.0 s	No	Natural ventilation	$1.5 - 1.9^*$
56	Yes	1.8 s	No	Natural ventilation	$1.5 - 1.9^*$
57	Yes	6.5 s	No	Natural ventilation	$1.5 - 1.9^*$

Hydrogen

- Train release case
- Storage mass: 5.55 kg
- Storage pressure: 580 bars

Release

• Pressure inside the tank was used to estimate mass flow rate

CFD modelling

- ADREA-HF code
- Continuity, Navier-Stokes, Energy, Species mass fraction equations
- Turbulence: k-ε model (Kato, Launder 1993 modification)
- Deflagration model:
 - Turbulent burning velocity model¹

¹Tolias I.C., Venetsanos A.G., 2018, An improved CFD model for vented deflagration simulations – Analysis of a medium-scale hydrogen experiment, IJHE, 43 (52), 23568-84

Grid sensitivity study

- First the grid sensitivity study in the x direction was examined
- Four different grids were used
- Wind speed equal to 1.3 m/s is used (average of the experimental measurements)

	Grid cases								
ID	Name	Number of cells in x	Number of cells in y	Number of cells in z	Total number	Number of			
		direction	direction	direction	of active cells	cells in source			
1	Grid_1x_1yz	288	117	94	1,242,886	4			
2	Grid_2x_1yz	490	117	94	1,821,909	4			
3	Grid_3x_1yz	646	117	94	2,268,849	4			
4	Grid_4x_1yz	788	117	94	2,679,705	4			

Grid sensitivity study: x direction

Hydrogen concentrations at ignition time (8.5 s)

Grid sensitivity study: x direction

Overpressures (ignition at x=38 m)

• Grid independency is achieved in 3rd grid

Grid sensitivity study

- y and z direction was examined
- Four different grids were used

	Grid cases							
ID	Name	Number of cells in x direction	Number of cells in y direction	Number of cells in z direction	Total number of active cells	Number of cells in source		
3	Grid_3x_1yz	646	117	94	2,268,849	4		
5	Grid_3x_2yz	646	144	114	3,804,269	4		
6	Grid_3x_3yz	646	152	124	4,470,576	4		
7	Grid_3x_4yz	658	171	142	6,384,087	9		

- Grid sensitivity study: y, z direction
 - Hydrogen concentrations at ignition time (8.5 s)

Grid sensitivity study: y, z direction

Overpressures (ignition at x=38 m)

• The second grid (blue line) is used in the rest of the study

19 Sep. 2023

CFD analysis of delayed ignition hydrogen releases from a train inside a tunnel

15/24

Three wind velocities were examined

CFD results – Wind effect

19 Sep. 2023

17/24

Overpressures

1.3 m/s to 1.6 m/s: 23% increase of wind results in 65% decrease in overpressure

- Simulations of other tests: Ignition delay
 - Tests 55-57: Ignition delay effect

	Test Number	Ignited	Ignition delay	Congestion	Wind type	Wind range
<	55	Yes	0.0 s	No	Natural ventilation	$1.5 - 1.9^*$
	56	Yes	1.8 s	No	Natural ventilation	$1.5 - 1.9^*$
	57	Yes	6.5 s	No	Natural ventilation	1.5 - 1.9*

Simulations of other tests: Ignition delay

• Tests 55-57: Ignition delay effect

	Test Number	Ignited	Ignition delay	Congestion	Wind type	Wind range	
	55	Yes	0.0 s	No	Natural ventilation	$1.5 - 1.9^*$	
<	56	Yes	1.8 s	No	Natural ventilation	1.5 - 1.9*	\triangleright
	57	Yes	6.5 s	No	Natural ventilation	1.5 - 1.9*	

Simulations of other tests: Ignition delay

• Tests 55-57: Ignition delay effect

Test Number	Ignited	Ignition delay	Congestion	Wind type	Wind range
55	Yes	0.0 s	No	Natural ventilation	$1.5 - 1.9^*$
56	Yes	1.8 s	No	Natural ventilation	$1.5 - 1.9^*$
57	Yes	6.5 s	No	Natural ventilation	$1.5 - 1.9^*$

Simulations of other tests: Ignition delay

• Tests 55-57: Ignition delay effect

Test Number	Ignited	Ignition delay	Congestion	Wind type	Wind range
55	Yes	0.0 s	No	Natural ventilation	$1.5 - 1.9^*$
56	Yes	1.8 s	No	Natural ventilation	$1.5 - 1.9^*$
57	Yes	6.5 s	No	Natural ventilation	$1.5 - 1.9^*$

Conclusions

- Detailed grid independency study was conducted revealing that deflagrations results are particular sensitive to grid changes.
 - 3.8 million cells to achieve satisfactory grid independency
- The agreement between simulation results and measurements was very good in the forced ventilation case.
- Simulation results reveal that only the hydrogen that exists in 5 m radius (1.5 times the tunnel height) from the ignition point contributes to maximum overpressure.
- Small changes in wind speed can have significant changes in overpressure. The higher the wind is the lower the overpressure is.
- About the experiments with different ignition delay, good agreement is achieved in the 0.0 s and 1.8 s cases. In the 6.5 s case the overpressure is predicted better when using wind speed equal to 1.0 m/s.

Ευχαριστώ! (Thank you)

Acknowledgements: The research leading to these results was financially supported by the HyTunnel-CS which has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 826193 The authors would like also to acknowledge the Greek Research & Technology Network (GRNET) for the computational time granted us in the Greek National HPC facility ARIS (http://hpc.grnet.gr) under project H2TUN (pr014025)

European Commission Horizon 2020 European Union funding for Research & Innovation

19 Sep. 2023

CFD analysis of delayed ignition hydrogen releases from a train inside a tunnel