

ID263 - Identification of safety critical scenarios of Hydrogen Refuelling Stations in a multifuel context

<u>Quesnel, S</u>., Pique S., Vyazmina, E., Saw J.L.

September 2023

September 19th 2023, Quebec City, Canada

Clean Hydrogen Partnership

This project has received funding from the Clean Hydrogen Partnership/Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 101006794. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe research.

"(...) lack of guidelines and instructions for local authorities can cause **delays**, **extra costs** and **divergent interpretations** from case-to-case, further complicating the obligations of H2 Refuelling Station operators." 2018, https://www.hylaw.eu/

Goals of the project :

Definition of **commonly applicable, effective, and evidence-based guidelines** to facilitate the construction of HRS in multi-fuel refuelling stations through:

Identification of relevant gaps in the current legal and administrative framework;

Acquisition of experimental data from engineering research;

Active engagement with a community of stakeholders in the overall process.

Main objective : To develop good practice guidelines that can be used as a common approach to risk assessment and addressing the safe design for gaseous hydrogen refueling stations in a multifuel context

1. WP structure

Consequence

High

Medium

Table 1: Main equipment on each configuration

* The production, liquefaction and delivery process have not been included in configuration 3. Liquid hydrogen stored in a stationary vessel was considered, refilled by a liquid hydrogen trailer by bunkering

Exemplar **Gaseous hydrogen** refuelling in **different configurations** (supply, flowrate, light and heavy-duty vehicles) :

•#1 – Small capacity, ready-to-deploy multifuel station (« *simple* » and already used technologies, situated in urban/ suburban locations with cars/ trucks/buses)

•#2 – Onsite H2 production multifuel station (*on-site hydrogen production*, *situated in suburban location with car and trucks/buses*)

Clean Hydrogen Partnership •#3 – High capacity multifuel station (*considering future large needs of hydrogen for mobility, situated in an industrial location with dispensers 300 g/s*)

2. Scope – H2 dispensers studied

Dispenser (A)

- Size: H 1 m x L 0.80 x W 0.4 m
- Congestion : 50% at the bottom
- Ventilation : Natural

Dispenser (B)

- Size : H 1.9 m x L 0.75 x W 0.6 m
- Congestion : 30% In the whole enclosure
- Ventilation : Natural & Forced

MultHyFuel

3. Preliminary results : lessons learnt

3. Preliminary results : Example safety barriers

Topics	Example safety barriers
Design	Design of canopy roof to limit degree of confinement
	Choice of materials : H2-compatible materials (e.g. for fittings, piping, seals, etc.)
	Safe location of outlet for vent lines and layout review
	Pressure safety valves
Operation	Hazardous Area Classification with management of ignition sources
	Concentration sensors, pressure and temperature sensors
	Vibration alarm on compressor with emergency shutdown
	Periodic control for the integrity of HRS and dispenser equipment (i.e. hoses)
Detection	H2 flame and gas detection with appropriate emergency protocols (e.g. alarms, shutdown, <i>etc</i> .)
Isolation	Shut-off valves to isolate equipment
	Flowrate restriction orifices, break-aways, quick couplings

MultHyFuel

4. Likelihoods

• **Example :** focus on H2 hose dispenser

					in any action	
Probability interval	E	D	С	В	А	
Frequency (<u>per</u> year)	E < 10 ⁻⁵	$10^{-5} < D < 10^{-4}$	$10^{-4} < C < 10^{-3}$	$10^{-3} < B < 10^{-2}$	10 ⁻² < A	

• **Semi quantitative approach** : evaluating the probability of occurrence from the Central Feared Event / top hazardous event. It is a simplified approach to classify the different major accident events.

• Sources of leak frequencies:

- SANDIA Database (hydrogen-specific data)
- **BEVI** (RIVM Netherlands)

- *Norskeolje&gass PLOFAM* "Process Leak for Offshore Installations Frequency Assessment Model" Offshore & Onshore Reliability Data

• Ignition likelihood :

- assumed to be equal to 1, in consideration of the low ignition energy required to ignite a flammable cloud of hydrogen (immediate/delayed ignition).
- the 2023 MultHyFuel WP2 experimental programme results, and the consideration of safety barriers, could help refine the evaluation of likelihoods.

4. Likelihoods

• Comparison :

Probability interval	E	D	С	В	А
Frequency (<u>per</u> year)	E < 10 ⁻⁵	$10^{-5} < D < 10^{-4}$	$10^{-4} < C < 10^{-3}$	$10^{-3} < B < 10^{-2}$	10 ⁻² < A

Table 3. Result of likelihood assessment for loss of containment from the dispenser hose.

	Control French French		Time	DATABASE			DPh/ major						
Config. (CFE)/ Top Event	Pressure maximum filling (h/day)		BEVI	Sandia	Norskeolje&gass PLOFAM	accident event							
1			3.33	А	D	E							
2		350 bar	5	А	D	E							
3			21.7	А	С	D							
1			3.33	А	D	E	(U)VCE						
2	Loss of H₂ containment (medium leak 10%) on	700 bar	700 bar	700 bar	700 bar	700 bar	700 bar	700 bar	5	А	D	D	Flashfire
3	hose		21.7	А	С	D	Jet fire						
1		1000 bar	3.33	А	D	D							
2			5	А	D	D							
3			21.7	А	С	D							

Sandia database data was chosen as the source of failure frequencies for the risk assessment. **Further work :**

- Validation of the occurrence of leakage using experimental data or lessons learned from new installations;
- Estimation of the likelihoods to take into account the mitigation and protective barriers; and
- Consideration of the ignition likelihood in the event of loss of containment.

5. Consequences

• Thresholds (French regulations)

	Radiative heat fluxes	Overpressures
Significant Lethal Effects (5%)	8 kW.m ⁻²	200 mbar
First Lethal Effects (1%)	5 kW.m ⁻² or 100% LFL	140 mbar
Irreversible Effects	3 kW.m ⁻² or 110% LFL	50 mbar
Indirect Effects (glass break)	-	20 mbar
LFL: Lower Flammability Limit		

• **Example of scenario** : H2 build up and VCE in dispenser casing

Assumptions :

- natural ventilation with 2-openings (top and bottom)
- GH2 concentration is homogeneous in the whole dispenser volume (conservative approach)
- if the calculated concentration is higher than 30% in the dispenser, then 30% is taken into account for a deflagration consequences calculation (30%-H2, stoichiometry or the worst case)
- If 100 mbar internal overpressure is reached, then the dispenser is considered to be destroyed and the overpressure decay is a function of the distance from the dispenser.

5. Consequences

• Results for dispenser :

Table 5. Consequences of the ignition of a 30% H2-air mixture inside dispensers A & B.

	Dispenser A	Dispenser B	
Volume	0.32 m ³	0.855 m ³	
Initial H ₂ concentration	30%*	30%*	
Internal effects			
Overpressure	284 mbar	195 mbar	
Consequence on structure*	Destruction	Destruction	
External effects - Overpressure decay with	the distance		
200 mbar	1 m	1 m	
140 mbar	1 m	2 m	
50 mbar	3 m	4 m	
20 mbar	6 m	8 m	

 * For lower H₂ concentrations, internal overpressure is lower than 100 mbar; thus, consequences are limited to inside the dispenser, which is not destroyed

• Results for the **full-bore rupture of the hose :**

- **jet fire** reaching more than 80 m for 700 bar, but safety barriers to be considered (limitation of duration by automatic shut-off valve; and limitation of release flow by a restriction orifice);

- **flash fire** (delayed ignition) with maximum effects at 15 m from the dispenser, the flowrate will be limited by the restriction orifice, and ignition likelihood could be reduced by the shut-off valve.

whipping of the hose (no domino effects / irreversible effects around dispenser)

6. Critical scenario determination

• Severity scale

(French Order of 20/09/2005) :

Severity level of consequence	Area defined by the thresholds of significant lethal effects (in French "Seuil des effets léthaux significatifs" SELS)	Area bounded by lethal effects thresholds (in French "Seuil des effets léthaux" SEL)	Area defined by the thresholds of irreversible effects (in French "Seuil des effets irréversibles" SEI)
V. Disastrous	More than 10 people exposed	More than 100 people exposed	More than 1000 people exposed
IV. Catastrophic	Less than 10 people exposed	Between 10 and 100 people exposed	Between 100 and 1000 people exposed
III. Major	At most 1 person exposed	Between 1 and 10 people exposed	Between 10 and 100 people exposed
II. Serious	No person exposed	At most 1 person exposed	Less than 10 people exposed
I. Moderate	No lethality zone outs	ide the establishment	Less than 1 person exposed

• Risk Matrix :

NO	High risk zone
MMR 1	Medium risk zone
MMR 2	Low risk zone
-	Acceptable risk zone

Severity of the	Likelihood (increasing direction from E to A)				
consequences on the people exposed to the risk	E	D	С	В	А
V. Disastrous	NO partiel (new site) / MMR rank 2 (existing site)	NO rank 1	NO rank 2	NO rauk 3	NO rank 4
IV. Catastrophic	MMR rank 1	MMR rank 2	NO rank 1	NO rank 2	NO rank 3
III. Major	MMR rank 1	MMR rank 1	MMR rank 2	NO rank 1	NO rank 2
II. Serious			MMR rank 1	MMR rank 2	NO rank 1
I. Moderate					MMR rank 1

6. Critical scenarios

- According to risk assessment, the equipment that registers the highest number of critical hazardous events is the **dispenser and its accessories**, but the storage, compression and liquid equipment in the station backyard also present a significant number of scenarios.
- This study shows that the hydrogen dispenser is a safety-critical piece of equipment in a refueling station. The central feared event is a loss of containment which can lead to **explosions in the open air** (UVCE) or in a confined environment (VCE inside the dispenser) or to jet fires or flashfires.
- The risk assessment also highlights that the large number of leaks are related to the high numbers of fittings in the different dispensers, potential failure of equipment due to hydrogen embrittlement, human error during maintenance, bad connections with hose or nozzle, impact events such as crash, vehicle driveaway or domino effects due to the LOC of other fuels.

Number	High-risk	Intermediate	Lower-
of events	zone	risk zone	risk zone
Config.1	13	28	2
Config. 2	13	27	3
Config. 3	24	26	4

Conclusions

H2 MultHyFuel

Risk assessment :

- For HRS, the most **foreseeable leaks are the small ones** with likelihoods in the range of 10⁻⁶/year,
- Focus on forecourt, the **most foreseeable hazardous events occur on the hose** (about 10⁻⁴/year).
- The highest number of safety critical scenarios are on the dispenser : 10% diameter of pipe and fullbore rupture of the hose leading to **UVCE or VCE inside the dispenser or jet/flash fires**

The following could be considered to <u>manage the risks</u>:

- Reducing the risk with **safety barriers** : breakaway couplings, crash protection around the dispenser island, gas detection with emergency shutdown, as well as adequate inspection and maintenance of equipment.
- **Reducing the number of connections** as well as the use of **alternative fitting types** should be investigated to reduce the likelihood of release.
- Reducing severity of events by **minimizing the number of people in the vicinity of the dispensers** during any refueling operation (e.g. passengers in coaches).

Next steps : **Refining the risk assessment** of the scenarios and events by considering results of experiments from WP2 of the MultHyFuel project, e.g. leak frequency and size, safety barriers efficiency, domino effects, ignition likelihoods.

Thank you for your attention

sebastien.quesnel@engie.com

info@multhyfuel.eu

next MultHyFuel webinar taking place on the **4**th of October between **11 am – 1 pm CEST**.

MultHyFuel

This project has received funding from the Clean Hydrogen Partnership/Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 101006794. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

The contribution to this presentation by HSE staff, including any opinions, conclusions or recommendations, do not necessarily reflect HSE policy or guidance.

