

TOWARDS THE SIMULATION OF HYDROGEN LEAKAGE SCENARIOS IN CLOSED BUILDINGS USING CONTAINMENTFOAM

19. SEPTEMBER 2023 I KHALED YASSIN, STEPHAN KELM, AND ERNST-ARNDT REINECKE

Mitglied der Helmholtz-Gemeinschaft

Motivation

The Living Lab Energy Campus project at FZ Jülich

MOTIVATION

Towards Net Zero Carbon by 2050 – the required hydrogen production

17-Sep-23

СН

Forschungszentrum

MOTIVATION

Safety concerns for indoor hydrogen use

How GH₂ behave in case of leakage?

> How to extract GH₂ from space in case of leakage?

Where to locate the sensors for proper GH₂ detection?

THE LIVING LAB ENERGY CAMPUS (LLEC) AT FZ JÜLICH

General overview: PtG++ sub project

LOHC Liquid Organic Hydrogen Carrier

THE LIVING LAB ENERGY CAMPUS (LLEC) AT FZ JÜLICH

The central utility building at Jülich campus

CFD libraries containment ∇F (\Re AM

- Flows and Transport Phenomena [1]
 - Efficient Multi-Species Solver: effective binary diffusion, Wilke mixture
 - Turbulence transport: $k-\omega$ SST model with buoyancy terms,
 - PARs: Code coupling with mechanistic model REKODIREKT
 - o Burst discs, flaps, doors: conditional mesh interfaces
 - Code coupling with OpenModelica
 - Conjugate heat transfer, Wall condensation, Fog formation, Gas radiation, Aerosol transport, Technical Systems and Components, porous media
- The codes are extensively validated against different experiments in nuclear and hydrogen applications [2]
 Transferring experience in nuclear safety to hydrogen safety

Steam distribution inside the containment, 3D CAD Geometry by [L. Serra-Lopez (UPM)]

 [1] Kelm, S. et al. "The Tailored CFD Package 'containmentFOAM' for Analysis of Containment Atmosphere Mixing, H₂/CO Mitigation and Aerosol Transport, *Fluids* (2021) 6, no. 3: 100.
[2] Yassin, K.; Kelm, S.; Kampili, M.; Reinecke, E.-A. Validation and Verification of containmentFOAM CFD Simulations in Hydrogen Safety. *Energies* 2023, *16*, 5993. https://doi.org/10.3390/en16165993

Scenarios

Mitglied der Helmholtz-Gemeinschaft

Simulation parameters

No ventilation vs Mechanical - cloud development (contour surface represents the LFL surface) After 5 s

No ventilation vs Mechanical After 15 s

No ventilation vs Mechanical After 20 s

No ventilation vs Mechanical After 40 s

Mechanical vs Natural Ventilation - cloud development (contour surface represents the LFL surface 4%) After 5 s

Mechanical vs Natural Ventilation After 15 s

Mechanical vs Natural Ventilation After 20 s

Mechanical vs Natural ventilation - cloud development

17-Sep-23

Volume of combustible cloud (i.e. $H_2 = 4\%-75\%$ vol.)

New proposed locations for exhaust outlets

17-Sep-23

Volume of combustible cloud with the new proposed locations

CONCLUSIONS

The main player in hydrogen cloud dispersion is the buoyancy force

- Natural ventilation from the ceiling is (usually) the most effective
- Exhaust outlets should be in the ceiling or as close as possible to it
- There should be no obstacles between potential hydrogen leakage source and the ceiling
- Overhead structures (ex.: Pipes) tend to break up the cloud which enhances mixing with the air, which increases the cloud volume
- Hydrogen tend to accumulate near the corners between walls and the ceiling
- More studies should be done to study the proper mechanical ventilation rates

FUTURE WORK

- Effects of different leakage locations and directions
- Optimizing sensors' locations
- Studying the usage of catalytic passive autocatalytic Recombiners (PARs) to mitigate hydrogen accumulation and dispersion in the building

- The Living Lab Energy Campus (LLEC) Power to Gas (PtG++) project is funded by the German Federal Ministry of Education and Research (BMBF) project No.:03SF0573.
- Simulations were carried out using Jülich Super Computer (JSC) for the project grant No. 26701

Contact: k.yassin@fz-juelich.de

Thank you for your attention !! Questions?

17.09.2023

COMPUTATIONAL GRID

17.09.2023

INITIAL AND BOUNDARY CONDITIONS

Variable	External walls		Internal walls		Air inlet		Atmosphere		Exhaust outlets		Domain linit
	BC	Init.	BC	Init.	BC	Init.	BC	Init.	BC	Init.	
р	fixedFluxPresure	1 bar	fixedFluxPresure	1 bar	inletOutlet	1 bar	inletOutlet	1 bar	fixedFluxPresure	1 bar	1 bar
Т	zeroGradient	-	zeroGradient	-	inletOutlet	298.15 K	inletOutlet	298.15 K	zeroGradient	-	298.15 K
U	No slip	(0,0,0)	No slip	(0,0,0)	inletOutlet	(0,0,0)	inletOutlet	(0,0,0)	Flow Rate Velocity	0.48567, 1.543 m3/s	
nut	SpaldingWall Function	1.00E-07	SpaldingWall Function	1.00E-07	inletOutlet	1.00E-07	inletOutlet	1.00E-07	calculated	1.00E-07	1.00E-07
k	kqR Wall Function	1.35E-05	kqR Wall Function	1.35E-05	inletOutlet	1.35E-05	inletOutlet	1.35E-05	zeroGradient	1.35E-05	1.35E-05
ω	omega Wall Function	1.00E-07	omega Wall Function	1.00E-07	inletOutlet	1.00E-07	inletOutlet	1.00E-07	zeroGradient	1.00E-07	1.00E-07
H ₂	zeroGradient	-	zeroGradient	-	inletOutlet	0	inletOutlet	0	zeroGradient	-	0
0 ₂	zeroGradient	-	zeroGradient	-	inletOutlet	0.2328	inletOutlet	0.2328	zeroGradient	-	0.2328
N ₂	zeroGradient	-	zeroGradient	-	inletOutlet	0.7672	inletOutlet	0.7672	zeroGradient	-	0.7672

NUMERICAL SOLVERS, SCHEMES, AND CONVERGENCE CRITERIA

Variable	Solutio	on	div Schomo		
variable	Solver	tol.			
р	GAMG	1.00E-06	Gauss upwind		
Т	PBiCGStab	1.00E-06	Gauss upwind		
U	PBiCGStab	1.00E-06	Gauss linearUpwind grad(U)		
nut	PBiCGStab	1.00E-06	Gauss linear		
k	PBiCGStab	1.00E-06	Gauss upwind		
ω	PBiCGStab	1.00E-06	Gauss upwind		
H ₂	PBiCGStab	1.00E-06	Gauss upwind		
O ₂	PBiCGStab	1.00E-06	Gauss upwind		
N ₂	PBiCGStab	1.00E-06	Gauss upwind		

Time	Euler
Grad.	cellMDLimited Gauss linear 0.5
Laplacian	Gauss linear limited 0.5
Interpol.	linear

TURBULENCE MODEL

k-ω SST with Simple Gradient Diffusion Hypothesis (SGDH)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{U}\right) &= 0\\ \frac{\partial \rho \vec{U}}{\partial t} + \nabla \cdot \left(\rho \vec{U} \otimes \vec{U}\right) &= -\nabla p + \nabla \cdot \tau + \rho \vec{g}\\ \frac{\partial \rho h_{tot}}{\partial t} + \nabla \cdot \left(\rho \vec{U} h_{tot}\right) &= \frac{\partial p}{\partial t} - \nabla \cdot \vec{q}'' + \nabla \cdot (\vec{U} \cdot \tau) + \vec{U} \cdot (\rho \vec{g}) - \nabla \cdot \vec{q}''_{rad}\\ \frac{\partial \rho Y_i}{\partial t} + \nabla \cdot \left(\rho \vec{U} Y_i\right) &= -\nabla \cdot \vec{J}_i \end{aligned}$$

TURBULENCE MODEL

k-ω SST with Simple Gradient Diffusion Hypothesis (SGDH)

$$\begin{split} \frac{\partial \left(\rho k\right)}{\partial t} + \nabla \cdot \left(\rho \vec{U}k\right) &= \nabla \cdot \left(\left(\mu + \mu_t \sigma_k\right) \nabla k\right) + \tilde{P}_k - \rho \beta^* \omega k + P_{k,b} \\ \frac{\partial \left(\rho \omega\right)}{\partial t} + \nabla \cdot \left(\rho \vec{U}\omega\right) &= \nabla \cdot \left(\left(\mu + \mu_t \sigma_\omega\right) \nabla \omega\right) + 2\left(1 - F_1\right) \frac{\rho \sigma_{\omega 2}}{\omega} \nabla k \cdot \nabla \omega + P_\omega + P_{\omega,b} - Y_\omega \\ P_{\omega,b} &= \nu_t ((\gamma + 1)C_3 \cdot max(P_{k,b}, 0) - P_{k,b}) \\ P_{k,b} &= -\frac{\nu_t}{\sigma_\rho} g_i \frac{\partial \rho}{\partial x_i} \end{split}$$

VALIDATION AND VERIFICATION: FLAME EXP.

O'hern, T. J., Weckman, E. J., Gerhart, A. L., Tieszen, S. R., & Schefer, R. (2005). Experimental study of a turbulent buoyant helium plume. *Journal of Fluid Mechanics*, *544*, 143-171.

Mitglied der Helmholtz-Gemeinschaft

17.09.2023

Seite 32

JÜLICH

Forschungszentrum

VALIDATION AND VERIFICATION: FLAME EXP.

Swain, M. R., Grilliot, E. S., & Swain, M. N. (1998). *Risks incurred by hydrogen escaping from containers and conduits* (No. NREL/CP-570-25315-Vol. 2; CONF-980440-Vol. 2). National Renewable Energy Lab.(NREL), Golden, CO (United States).

Natural ventilation - cloud phenomena after 20 s

High concentrations at corners

MOTIVATION

But...hydrogen has extreme physical properties

Kotchourko, A. and Jordan, T. eds., 2022. Hydrogen Safety for Energy Applications: Engineering Design, Risk Assessment, and Codes and Standards. Butterworth-Heinemann.
Mitglied der Helmholtz-Gemeinschaft
17-Sep-23
Seite 35

Phenomena occurring during GH2 leakage

THE LIVING LAB ENERGY CAMPUS (LLEC) AT FZ JÜLICH

Scope of work

MOTIVATION

Remove the first motivation slide Say more about the building and its complixty We are transferring experience from Nuclear applications to Hydrogen applications

