Hydrogen safety strategies and risk management in Equinor

Samdal, U.N. (Presenter), Grainger, D., Hamborg, E.S., Nilsen, S.H., Sommersel, O.K.
Our value chain

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Development and production</th>
<th>Transportation</th>
<th>Processing and refining</th>
<th>Marketing and trading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore seismic and drilling</td>
<td>Offshore oil and gas</td>
<td>Pipelines</td>
<td>Refineries</td>
<td>Oil</td>
</tr>
<tr>
<td>Onshore seismic and drilling</td>
<td>Offshore oil and gas</td>
<td>Ships</td>
<td>Gas plants</td>
<td>Gas</td>
</tr>
<tr>
<td>Offshore wind</td>
<td></td>
<td>Trains</td>
<td>Energy storage</td>
<td>Electric</td>
</tr>
<tr>
<td>Solar</td>
<td></td>
<td>Power stations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Offshore seismic and drilling
- Onshore seismic and drilling
- Offshore oil and gas
- Onshore oil and gas
- Offshore wind
- Solar
- Pipelines
- Ships
- Trains
- Power stations
- Refineries
- Gas plants
- Energy storage
- Oil
- Gas
- Electric
Equinor Climate Roadmap

- Climate is embedded in our decision-making
- Profitable growth in renewables
- We use our voice to drive change
- Industry leading in carbon efficiency
- Accelerate decarbonisation
Shaping the European future of CCS and clean hydrogen

Competitive edge founded on experience, infrastructure and customers.

15-30 MTPA
CO₂ transport and storage capacity by 2035
Equinor share:

>25%
CO₂ transport and storage market share in Europe by 2035

3-5 MAJOR INDUSTRIAL CLUSTERS
Clean hydrogen projects by 2035

>10%
Clean hydrogen market share in Europe by 2035
Hydrogen utilisation

- Known in industry for more than a century

- Many actors are new to hydrogen, but familiar with hydrocarbons like natural gas (NG)

- Hydrogen is different to natural gas. These differences must be reflected in the design and operation of facilities

Industrial electrolysis of water, early 20th century
(https://www.gutenberg.org/files/14990/14990-h/14990-h.htm)
Hydrogen characteristics

Containment (small molecule + failure mechanism)

Flammability (flammable concentration in air - wide range)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Lower Flammability Limit (LFL)</th>
<th>Upper Flammability Limit (UFL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>5.3</td>
<td>15</td>
</tr>
<tr>
<td>Propane</td>
<td>2.0</td>
<td>10.5</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Acetylene</td>
<td>4.0</td>
<td>75</td>
</tr>
<tr>
<td>Acetylene</td>
<td>2.2</td>
<td>85</td>
</tr>
</tbody>
</table>

Ignitability (low energies)

Reactivity (fast flame acceleration and DDT)

![Graph showing milli-Joules for different fuels](https://h2tools.org/bestpractices/hydrogen-compared-other-fuels)

![Graph showing laminar burning velocities of hydrogen-air and hydrogen-methane-air mixtures](https://miub.ch/BestPractices/hydrogen-compared-other-fuels)

Source: https://h2tools.org/bestpractices/hydrogen-compared-other-fuels

Other hydrogen characteristics

- High buoyancy and high diffusivity of gas
- If released in open air the gas will rise and dilute rapidly, unless determined by a jet
 - Note: Evaporation from liquid hydrogen may behave like a heavy gas

- Hydrogen burns with a light blue flame, practically invisible in daylight

- Very low boiling point (20 K, -253°C.)
Two hydrogen accident case studies

Both occurred at Herøya industrial site, Porsgrunn, Norway

1. Explosion in an ammonia plant, 1985

2. Explosion of a hydrogen-air mixture in a pipeline for CO$_2$ transportation, 1997
Explosion in an ammonia plant, 1985
(presented in ICHS 2005*)

- Two fatalities, extensive damage
- A combination of operational error, technical failures and weakness in the design
- 10-20 kg of hydrogen leaked inside the building
- Most likely that a hot bearing ignited the gas cloud
- 3.5-7 kg of hydrogen involved in the explosion
- From the damage observed, detonation seems most likely
- The explosion caused large number of fragments representing a severe hazard
- Glass windows were broken up to 700 m from the centre of the explosion.
- Within a radius of 100 m all ordinary windows were broken.

Bjerketvedt, D and Mjaavatten, A (2005), A Hydrogen Explosion in a Process Plant - A Case History, Conference paper, ICHS
Explosion of a hydrogen-air mixture in a pipeline, 1997
(Published in Process safety progress, Vol. 20, Issue 1, 2001*)

- No injuries (Sunday afternoon), but extensive damage
- A combination of operational error, technical failures and weakness in the design (again)
- CO₂ pipeline had been out of service for six days
- Hydrogen leaked into pipeline
- Ineffective purging, air leaking into pipeline
- Possibly ignited by external hot work
- 10 kg of hydrogen involved in explosion
- 850 meters of the pipeline was totally destroyed
- Combustion front accelerated in pipeline, causing rupture at intervals of 1-20 m

Safety strategy and its role in safety and risk management

- Authority regulations
- Company requirements
- Risk picture
 - Identified hazards, risk analysis
- Safety strategy
- Maintenance plans
 - Verification activities
 - Etc.
Bow-tie, flammable gas release

Structure
- Layout design principles
- Explosion barriers
- Structural integrity

Containment
- Containment
- Process control

Instrumented safety systems
- Gas and fire detection
- Emergency shutdown
- Hazard and alarm management
- Ignition source control

Ignition control
- Natural and mechanical ventilation

Protection systems
- Emergency venting and flaring
- Fire protection
- Drain system
- Safe combustion

Power and communication
- Emergency warning and communication

Life saving
- Evacuation and rescue

Probability reducing

Consequence reducing
Structural loads

Layout & explosion barriers
- Avoid enclosed and confined areas
- “Open box” design to direct leaks away from confined and congested areas
- H₂ piping on top of buildings/structures, outdoors
- Safe location of vent system outlets
- Restricted flow of hydrogen
- Explosion relief panels
- Design for explosion loads
- Design to avoid detonation

Layout design principles

Explosion barriers

Structural integrity
Ensure containment

Containment
- H₂-suitable materials of construction
- Fully welded systems
- «Pipe-in-Pipe» solutions
- ESD valves

Process Control
- Pressure, temperature and level control
- Pressure relief systems
- H₂ vent system
Detection and shutdown

Gas and fire detection
- Specific H₂ gas & flame detectors, sonic detection
- Close to typical leak points
- Early detection in «pipe-in-pipe» in confined areas

Emergency shutdown
- Valves automatically to safe position in case of an accident/leak
Prevent ignition

Natural and mechanical ventilation
- H₂-containing equipment and potential leak points located in open, naturally ventilated areas, high level
- High ventilation rate in confined areas

Ignition source control
- Equipment Group IIIC in H₂ hazardous areas
- Prevent static electricity formation
- Shutdown of ignition sources if confirmed gas detection
Mitigating consequences

Venting and emergency depressurisation
- Vents to be located and designed for ignited scenarios
- Blowdown to safe location
- N₂ purging & pilot flame in flares

Active and passive fire protection
- Protect structures against heat exposure

Protection systems

- Emergency venting and flaring
- Active/passive fire protection
- Safe combustion
Emergency preparedness and response

- Follow general principles for facilities containing flammable substances
- Emergency response related to liquid hydrogen must be considered further
Summing up

- The safety strategy approach used in our oil and gas facilities is valid also for H₂
- Facility design and safety barrier requirements must be adapted to H₂ challenges
- More work needed on safe utilisation of liquid hydrogen
- Safety barriers in design, adapted to the properties and risk characteristics of hydrogen, are being implemented in Equinor hydrogen value chain projects
Thank you!

Hydrogen safety strategies and risk management in Equinor

Unni Nord Samdahl, usam@equinor.com