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Introduction

Introduction:

I Lean H2-air mixtures with high stretch rates:
I Develop cellular instability
I −ve Markstein (Ma) number and ↑ burning rates
I Contributes to flame acceleration (FA) and DDT

I Rich H2-air mixtures with high stretch rates:
I More stable
I Delayed FA and DDT

I Characterization of the response of the flame to
stretch is of primary importance for risk assessments

FA in 10% H2-air [Matsukov et al. 1999]
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Introduction

Past investigations on influence of flame stretch:

I 1-D simulations of spherical H2-air flames:
I Effect of stretch on temperature and radical

formation vs. unstretched flames [Aung et al., 1997]
I ↑ flame speed for unstable lean H2-air mixtures due to a

“more nearly stoichiometric” mixture formed due to the
preferential diffusion of H2

I Stretched flames with He and Ar dilution [Kwon and
Faeth, 2001]

I Global parameter measurements independent of flame
configuration, i.e. outward vs. inward [Sun et al.,
1999]

I Comparison of lean H2-air mixtures to experimental
data 30% discrepancy [Varea et al., 2015]

I Such 1D codes not open-source or freely available
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Introduction

Goals of this work:

1. Create open-source code to simulate 1-D unsteady
spherically expanding flames
I Based on old run-1DL code in Lagrangian coordinates

[Rogg and Wang, 1995] (not publicly available)

2. Validation of flame speed and Ma to lean/rich H2-air
experiments (for 0.3 ≤ φ ≤ 5, T1 = 300K, p1 = 101kPa)

3. Examine the flame dynamics of lean/rich hydrogen-air
mixtures
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Numerical Method

Numerical Method:
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Numerical Method

Numerical Method:

I Written in C/C++
I Low Mach number approximation (∇p ≈ 0) [Paolucci,

1982]
I Incorporates Cantera libraries [Goodwin et al., 2018]
I Detailed USC-Mech II mechanism (10 species, 28

reactions) [Davis, 2005]
I Explicit upwind differencing on advection-like terms
I Explicit central differencing on 2nd order diffusion term
I Implicit integration of reaction terms using Sundials

CVODE libraries [Cohen and Hindmarsh, 1996]
I Parallelized for shared memory using Open-MP [Dagum

and Menon, 1998]
I Run on HPC, using 16 CPUs per simulation
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Numerical Method

Numerical Method:

I Resolved on 5000 computational cells per simulation
I Domain size: r ≥ 24mm
I Spatial resolution corresponds to ∆r ≤ 4.8μm
I Ma evaluated from 8mm ≤ Rf ≤ 24mm
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Results

Obtaining the Marktein number:

Markstein length and flame speed in burned products:

Sb = S0
b − Lb · κ, (4)

Stretch rate is κ = 2 Sb
Rf

, Rf is the flame radius, and Sb is given by

Sb = dRf
dt . Integrating (4) w.r.t.t gives

S0
b · t = Rf + 2Lb · ln (Rf ) + Cst , (5)

S0
b and Lb in burned products are found using least-square fitting

and related to S0
u and Lu through expansion ratio (σ = ρu/ρb)

Finally, the Markstein number is

Mau =
Lu
δf
, (6)

where δf is the unstretched flame thickness.
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Results

Extrapolation model:

I Lean flames have −ve Ma, while other cases have +ve Ma
I Extrapolation to zero-stretch is consistent (Sb/S

0
b → 1)
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Results

Unstretched flame speeds:

I Experimental S0
u captured within 5% mean absolute error

I 40-45 % discrepancies for very lean
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Results

Markstein numbers:

I Ma for lean mixtures captured well
I Discrepancies for rich mixtures
I USC-II well suited for FA and DDT in lean mixtures
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Lagrangian particle dynamics

Lagrangian particle dynamics:

I Lean: φ = 0.5, Ma = −0.15
I Rich: φ = 3.0, Ma = +0.15
I Lagrangian trackers placed to measure dynamics for

Ka = 0.075 and Ka = 0.05 (Ka = κδf /S
0
b )
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Lagrangian particle dynamics

Lagrangian particle dynamics:

I Low Karlovitz (Ka) number has ↑ initial heat diffusion
I High Ka has ↑ heat diffusion at end of τdiff

I −ve Ma has ↑ heat release as expected
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Lagrangian particle dynamics

Lagrangian particle dynamics:

I Dominant reaction pathways the same for both Ka
I Low Ka initially has ↑ energy release rates
I High Ka overall has ↑ energy release rates
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Lagrangian particle dynamics

Lagrangian particle dynamics:

I Lower Ka leads to faster drop in φ due to ↑ diffusion of
hydrogen (before chemistry), vice-versa
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Lagrangian particle dynamics

Lagrangian particle dynamics:

I Drop in φ evident by drop in H2
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Lagrangian particle dynamics

Rate of production of H:

I ↑ Ka ultimately leads to ↑ ROP of all reactions
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Lagrangian particle dynamics

Rate of production of OH:

I H + O2 + (M)
 HO2 + (M) first, then
HO2 +H
 OH+OH reactions important for lean flames
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Conclusions

Conclusions:

I Untstretched laminar flame speed captured well

I Discrepancies observed for fuel-rich Ma
I Can lead to inaccurate prediction of stability in rich

flames
I Implications on simulating flame acceleration and

DDT
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Conclusions

Conclusions:

I For lean mixtures:
I Diffusion of H2 is slower at high stretch rate (κ)
I Less lean flame
I ↑ reactivity and flame speed w.r.t. stretch rate

I For rich mixtures:
I Diffusion of H2 is faster at high stretch rate
I More lean flame
I ↑ reactivity w.r.t. stretch rate (despite +ve Ma)



Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation 21/21

Conclusions
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