Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation

Brian Maxwell¹ Remy Mével² Josué Melguizo-Gavilanes³

¹Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleaveland, OH, USA

²Center for Combustion Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China

> ³Institut Pprime, UPR 3346 CNRS, ISAE–ENSMA 86961 Futuroscope-Chasseneuil, France

> > September 13, 2021

Introduction:

- ► Lean H₂-air mixtures with high stretch rates:
 - Develop cellular instability
 - Ve Markstein (Ma) number and ↑ burning rates
 - Contributes to flame acceleration (FA) and DDT
- ► Rich H₂-air mixtures with high stretch rates:
 - More stable
 - Delayed FA and DDT
- ► Characterization of the response of the flame to stretch is of primary importance for risk assessments

FA in $10\% H_2$ -air [Matsukov et al. 1999]

Past investigations on influence of flame stretch:

- ▶ 1-D simulations of spherical H₂-air flames:
 - ► Effect of stretch on temperature and radical formation vs. unstretched flames [Aung et al., 1997]
 - ▶ \uparrow flame speed for unstable lean H_2 -air mixtures due to a "more nearly stoichiometric" mixture formed due to the preferential diffusion of H2
 - Stretched flames with He and Ar dilution [Kwon and Faeth, 2001]
 - ▶ Global parameter measurements independent of flame configuration, i.e. outward vs. inward [Sun et al., 1999]
 - ► Comparison of lean H₂-air mixtures to experimental data 30% discrepancy [Varea et al., 2015]
- ► Such 1D codes not open-source or freely available

Goals of this work:

- 1. Create open-source code to simulate 1-D unsteady spherically expanding flames
 - ► Based on old run-1DL code in Lagrangian coordinates [Rogg and Wang, 1995] (not publicly available)
- 2. Validation of flame speed and Ma to lean/rich H_2 -air experiments (for $0.3 \le \phi \le 5$, $T_1 = 300 \mathrm{K}$, $p_1 = 101 \mathrm{kPa}$)
- Examine the flame dynamics of lean/rich hydrogen-air mixtures

Numerical Method:

$$\rho \frac{\partial Y_{i}}{\partial t} = \underbrace{\dot{\omega}_{i}}_{\text{production rate}} - \rho \frac{\partial (\rho r^{2} u_{d,i} Y_{i})}{\partial m}$$

$$\Delta \text{ mass (specie i)} = \rho \frac{\partial}{\partial m} \left(\rho r^{4} k \frac{\partial T}{\partial m} \right) - \sum_{i=1}^{N} \rho^{2} r^{2} c_{p,i} u_{d,i} Y_{i} \frac{\partial T}{\partial m} - \sum_{i=1}^{N} h_{i} \dot{\omega}_{i}$$

$$\Delta \text{ enthalpy} \qquad \text{diffusion} \qquad \text{heat release}$$
(2)

transformation to mass-weighted Lagrangian coordinates $(r, t) \rightarrow (m, t)$:

$$m(r,t) = \int_{r=0}^{r} \rho r^2(r,t) dr$$
 (3)

Numerical Method:

- ► Written in C/C++
- Low Mach number approximation ($\nabla p \approx 0$) [Paolucci, 1982]
- ► Incorporates Cantera libraries [Goodwin et al., 2018]
- ▶ Detailed USC-Mech II mechanism (10 species, 28 reactions) [Davis, 2005]
- Explicit upwind differencing on advection-like terms
- Explicit central differencing on 2nd order diffusion term
- ► Implicit integration of reaction terms using Sundials CVODE libraries [Cohen and Hindmarsh, 1996]
- ► Parallelized for shared memory using Open-MP [Dagum and Menon, 1998]
- ► Run on HPC, using 16 CPUs per simulation

Numerical Method:

- Resolved on 5000 computational cells per simulation
- ▶ Domain size: $r \ge 24$ mm
- ▶ Spatial resolution corresponds to $\Delta r \leq 4.8 \mu \mathrm{m}$
- ▶ Ma evaluated from $8 \text{mm} \le R_f \le 24 \text{mm}$

Obtaining the Marktein number:

Markstein length and flame speed in burned products:

$$S_b = S_b^0 - L_b \cdot \kappa, \tag{4}$$

Stretch rate is $\kappa=2\frac{S_b}{R_f}$, R_f is the flame radius, and S_b is given by $S_b=\frac{dR_f}{dt}$. Integrating (4) w.r.t.t gives

$$S_b^0 \cdot t = R_f + 2L_b \cdot \ln(R_f) + C_{st},$$
 (5)

 S_b^0 and L_b in burned products are found using least-square fitting and related to S_u^0 and L_u through expansion ratio ($\sigma = \rho_u/\rho_b$) Finally, the Markstein number is

$$Ma_u = \frac{L_u}{\delta_{\epsilon}},$$
 (6)

where δ_f is the unstretched flame thickness.

Extrapolation model:

- ▶ Lean flames have −ve Ma, while other cases have +ve Ma
- lacktriangle Extrapolation to zero-stretch is consistent $(S_b/S_b^0 o 1)$

Points: Simulation; Lines: Extrapolation model.

Unstretched flame speeds:

- \triangleright Experimental S_u^0 captured within 5% mean absolute error
- ▶ 40-45 % discrepancies for very lean

Red: Mixture-averaged transport; Black: Multi-component.

Markstein numbers:

- Ma for lean mixtures captured well
- Discrepancies for rich mixtures
- ▶ USC-II well suited for FA and DDT in lean mixtures

Red: Mixture-averaged transport; Black: Multi-component.

- ▶ Lean: $\phi = 0.5$, Ma = -0.15
- ▶ Rich: $\phi = 3.0$, Ma = +0.15
- Lagrangian trackers placed to measure dynamics for Ka=0.075 and Ka=0.05 ($Ka=\kappa\delta_f/S_b^0$)

- ► Low Karlovitz (Ka) number has ↑ initial heat diffusion
- ▶ High Ka has \uparrow heat diffusion at end of $\tau_{\rm diff}$
- −ve Ma has ↑ heat release as expected

 $(\phi = 0.5, Ma = -0.15)$ Solid: Ka = 0.075; Dashed: Ka = 0.05

- Dominant reaction pathways the same for both Ka
- ▶ Low Ka initially has ↑ energy release rates
- ► High Ka overall has ↑ energy release rates

Solid: Ka = 0.075; Dashed: Ka = 0.05

▶ Lower Ka leads to faster drop in ϕ due to \uparrow diffusion of hydrogen (before chemistry), vice-versa

Solid: Ka = 0.075; Dashed: Ka = 0.05

 \blacktriangleright Drop in ϕ evident by drop in H_2

Solid: Ka = 0.075; Dashed: Ka = 0.05

Rate of production of H:

► ↑ Ka ultimately leads to ↑ ROP of all reactions

Solid: Ka = 0.075; Dashed: Ka = 0.05

Rate of production of OH:

► $H + O_2 + (M) \rightleftharpoons HO_2 + (M)$ first, then $HO_2 + H \rightleftharpoons OH + OH$ reactions important for lean flames

Solid: Ka = 0.075; Dashed: Ka = 0.05

Conclusions:

- ▶ Untstretched laminar flame speed captured well
- Discrepancies observed for fuel-rich Ma
 - Can lead to inaccurate prediction of stability in rich flames
 - Implications on simulating flame acceleration and DDT

Conclusions:

- For lean mixtures:
 - \blacktriangleright Diffusion of H2 is slower at high stretch rate (κ)
 - Less lean flame
 - ▶ ↑ reactivity and flame speed w.r.t. stretch rate
- For rich mixtures:
 - ▶ Diffusion of H2 is faster at high stretch rate
 - More lean flame
 - ↑ reactivity w.r.t. stretch rate (despite +ve Ma)

Acknowledgement

Resources provided by

► High Performance Computing (HPC) resources provided the Core Facility for Advanced Research Computing at Case Western Reserve University (CWRU)

