PRHYDE-Protocol for heavy-duty <u>hydrogen</u> refuelling

Call Identifier FCH-04-2-2019:

Refuelling Protocols for Medium and Heavy-Duty Vehicles

Presenter: Claus Due Sinding, Nel Hydrogen

01 JAN 2020 - 31 DEC 2021

Horizon 2020 European Union Funding for Research & Innovation

Acknowledgement

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 874997.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme.

Opportunity for Paradigm Change

- □ HD fueling offers a new opportunity for a change in thinking a paradigm change!
- **HD** vehicle market is still immature so there are no legacy vehicles or stations that we must consider
- □ The time is ripe for changing the existing paradigm and developing fueling protocol concepts that can
 - 1) Improve hydrogen fueling performance
 - 2) Improve the overall safety of hydrogen fueling
 - 3) Minimize the total cost of ownership (TCO)
 - 4) Provide a "universal" protocol framework for ALL vehicles using compressed hydrogen storage

www.PRHYDE.eu

Fueling Protocol Philosophies or "Types"

Fueling Protocol Philosophies are categorized based on the vehicle CHSS information used by the Protocol

Vehicle CHSS Information Used	Gas Temp Margin	Performance Acceptable?	Pre- cooling Temp	Station Costs	Vehicle Costs	Non- Comm Fueling?	Comment		
1 None	t	Maybe	T40	1	ţ	Yes	 J2601 philosophy Worst case assumptions about most things Fueling history assumed Station fully responsible (and liable) 		
2 Static Data		Yes	T30?			Yes	 CHSS assumptions eliminated Some crucial worst-case assumptions eliminated Fueling history assumed Station and vehicle share responsibility / liability although most is still on station side 		
3 Dynamic Data (CHSS gas temp)	ł	Yes	T20?	ł	1	Maybe	 Most crucial worst-case assumptions eliminated The gas temp can be used in different ways Direct use or to screen for fueling history Station & vehicle share responsibility / liability 		

• There are three primary protocol philosophies upon which a fueling protocol can be structured

• Within each of these philosophies, different fueling methods can be constructed and utilize (e.g. table-based & MC-Formula)

Performance-Based vs Prescriptive Approaches

Besides the Protocol Philosophy or Structure, a protocol can be either be prescriptive or performance-based

- J2601 is an example of a prescriptive approach
- J2601-2 and J2601-4 are examples of performance-based approach

Protocol Approach	Advantages	Disadvantages
Prescriptive	 Consistency of fueling performance for end customer Much easier to validate stations because only need to validate the implementation, not validate the fueling method itself Already developed, so no development costs Open and fair to all companies both small and large 	 Less room for innovation More difficult to get a fueling method approved (e.g. effort for MC Formula)
Performance- based	 More room for innovation Allows for competition between companies 	 High development costs Less fair for small companies (must spend on development) Allows companies to corner the market through IP

• For a given protocol philosophy / structure, the protocol can either be prescriptive or performance-based

• There are advantages and disadvantages to both approaches

Station Control vs Vehicle Control

In addition to the protocol philosophy, prescriptive vs performance-based, another factor is the protocol control refuelling

Protocol for heavy-duty

- Does station control the fill, vehicle control the fill, or combination?
- Must also define what "control" means
 - **Command control** calculation of control parameters
 - Physical control mechanical elements responsible for controlling the flow of hydrogen
- It is very unlikely that the vehicle will implement physical control, although it is theoretically possible
- Vehicle could, however, implement command control

Command Control	Advantages	Disadvantages
Station (Type 1, 2, or 3)	 May not require advanced bi-directional communications (lower cost) One-stop shop – station determines both command and physical control Lower functional safety requirements on vehicle (lower cost) 	 Higher functional safety requirement on station (higher cost) Stations typically have lower processing power than vehicles so it may be more difficult to implement a complex algorithm on station PLC Station has more responsibility / liability
Vehicle (Type 3 only)	 Vehicles inherently have high processing power on- board – it may be easier and lower cost to implement a complex algorithm on vehicle Lower functional safety requirements on station (lower cost) 	 Higher functional safety requirements on vehicle (higher cost) Vehicle has more responsibility / liability

Advanced MC Formula Framework

PRHYDE

Protocol for heavy-duty

□ This framework allows for many options (even options beyond what is shown here)

Some OEMs might favor a Type 2 approach while others might favor a Type 3-PR-S or Type 3-PB-V approach

Overview – MC Formula: Key Control Variables

- Mass Average Fuel Delivery Temperature MAT
- The time required to fill from minimum to maximum pressure under hot case conditions t_{final}
- Variable Pressure Ramp Rate **PRR**
- Target Pressure P_{target}
- MAT, t_{final}, and PRR are calculated every second

$\mathsf{MAT} \rightarrow \mathsf{t}_{\mathsf{final}} \rightarrow \mathsf{PRR}$

Advanced MC Formula – How it Works

- □ MC Formula in SAE J2601 is based on a worst-case set of boundary conditions and assumptions
- □ This Advanced MC Formula approach utilizes a more precise set of boundary conditions / assumptions

Protocol for heavy-duty

- □ Additionally, the way that the t-final control parameter is derived is more flexible
 - > A table of t-final values can be derived (similar to the a, b, c, d coefficients but more flexible)
- A t-final map is derived by using a validated fueling model to run a set of fueling simulations under a variety of fueling conditions
 - > This t-final map is "tuned" to the vehicle's CHSS, maximizing fueling performance
 - > The t-final map is stored in the vehicle ECU
- This framework can also facilitate a vehicle command control fueling method where the vehicle calculates the control parameters and communicates these as commands to the station to implement

Advanced MC Formula – How it Works (Derivation)

H. Protocol for heavy-duty Hydrogen refuelling

Uvehicle OEM inputs complete CHSS design into the fueling model using actual CHSS thermophysical properties

- A verified fueling model is used to conduct fueling simulations under the range of conditions noted above
- A complete set of **t-final tables** is derived (*the fueling model could be programmed to do this automatically*)
- □ These maps are stored in the vehicle ECU

□ The fueling is custom tailored to the vehicle's characteristics providing much better fueling performance

Comparison of Fueling Concepts

Fueling Concept Criteria	Static	T _{gas} Initial	T _{gas} Initial+	T _{gas} Throttle	Vehicle Control			
Fueling time (under wide variety of initial conditions)	Slow	Fast	Faster	Fastest	UD			
Sensor position accuracy requirement	Low	Low	Low	High	UD			
Vehicle functional safety level	Low	High	High	Higher	Highest			
Requires bi-directional communications	Optional	Possibly	Possibly	Possibly	Likely			
Number of tables	Few	More	More	Fewest	UD			
Complexity of fueling protocol development	Low	Medium	Medium	Higher	Highest			
Impact of conservative assumptions on performance	Highest	High	High	Low	UD			
UD = Undetermined due to flexibility of approach								

Down Selection of Fueling Concepts

www.PRHYDE.eu

Risk assessment (RA) approach

- Team using bowtie framework
- Focusing on events which could affect fueling protocol (e.g., pressure sensor failure)
- RA <u>not</u> examining conventional vehicle/station failures (e.g., hose burst)
- Each fueling approach will be evaluated to determine what controls will be required on vehicle and station side.
- LOPA Framework for quantification

Additional support provided by Technical Experts

- Savannah River National Laboratory
- Sandia National Laboratory
- Risktec Solutions

Performance simulations: Parameters and conditions

- Vehicle and station parameters used for performance simulation
- The combined system starts at dispenser breakaway and ends at vehicle vessel, represented by an Equivalent System Kv

CHSS Parameters								
Parameter	Assumption							
Pressure rating	H70							
Multiple vessel CHSS	Yes							
Vessel size	162L							
Number of vessels	9							
Total CHSS volume	1458L							
Vessel type	Type IV							
Fuel line equivalent Kv	0.28 m3/h							
Fuel line thermal mass	28.28 kg							
Fuel line Characteristics	Stainless steel							

CHSS Conditions									
Condition	Assumption	Rational							
Initial temperature of H2 in vessel	Tamb +/- soak	SAE J2601-1							
Initial temperature of vessel wall	Tamb	SAE J2601-1							
Initial temperature of fuel line	Tamb	SAE J2601-1							
Cold or warm dispenser?	Warm	Focus on constrain cases							
Nozzle temperature fixed during fueling?	Yes	MAT also remains fixed during the fueling							
Leak checks during fueling?	No								

Performance simulations: Scenarios (examples)

- Example of a performance scenario (base case)
- Thermal mass and Kv will be varied for other scenarios

Scenario													
						Static		Tgas initial		Tgas intial+		Tgas throttle	
Thermal Mass = 21 kg	T _{amb}	T _{gas0}	T _{vessel0}	T _{fuel}	P ₀	Fueling Time	Ending SOC	Fueling Time	Ending SOC	Fueling Time	Ending SOC	Fueling Time	Ending SOC
cm^2		40	40	TBD	2								
nternal surface area = 6895 cm2					5								
(v = 0.14 m3/h	35				10								
					15								
					20								
	35	35	35	TBD	2								
					5								
					10								
					15								
			30	TBD	20								
					2								
	25	25			5								
	35	25			10								
					15								
		45	40	TBD	10								
	35				15								
	55				20								
					20								

Overall Advantages of Approach

Advanced MC Formula provides a "framework" which accommodates a variety of options

□ Type 1 (non-comm), Type 2 (static data), Type 3-PR-S (dynamic data) and Type 3-PB-V (dynamic data vehicle control) approaches are supported under this framework

□ An OEM can choose which protocol Type and option to use – the Advanced MC Formula framework supports them all

Within the **Type 3 dynamic data approach**, there are **options beyond (or variances within) the three shown here**

> Also, an OEM has complete control and discretion in deriving the t-final maps for the vehicle CHSS

This approach facilitates future advanced CHSS designs (Type 5 tanks, conformable tanks)

Fueling performance should be **excellen**t, especially with Type 3 options

Further refinement of these approaches may allow for **even better fueling performance**

Protocol development is minimal because the MC Formula control framework already exists

www.PRHYDE.eu

Contact information

- Interact with PRHYDE:
 - E-mail list for PRHYDE stakeholders
 - → please send e-mail to info@prhyde.eu if you want to receive or not to receive info / news
 - PRHYDE deliverables & presentation will be made available for comments / feedback
 → to be downloaded from the PRHYDE website: www.prhyde.eu
 - Keep an eye out for upcoming PRHYDE Webinars

→ Please provide your comments / inputs any time to info@prhyde.eu

17