PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

<u>Charolais, A.</u>¹, Ammouri, F.¹, Vyazmina, E.¹, Nouvelot, Q.², Guewouo, T.², Greisel, M.³, Gebhard, M.³, Kuroki, T.⁴, Mathison, S.⁵

¹ Air Liquide, Innovation Campus Paris (France)
 ² Engie Lab CRIGEN (France)
 ³ Wenger Engineering (Germany)
 ⁴ National Renewable Energy Laboratory (USA)
 ⁵ First Element Fuel (USA)

Introduction

THIS DOCUMENT IS PUBLIC

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

1) Introduction Modeling software for hydrogen fillings

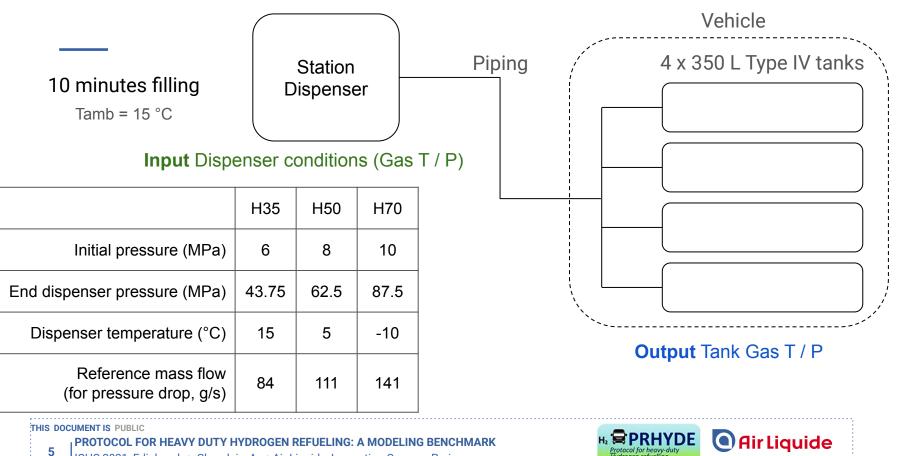
- Use of hydrogen in mobility uses (road transport, ...) to increase
- Hydrogen Refueling Stations (HRS) needed to be safe, fast and easy-to-use
- Gaseous filling \rightarrow heat generation in the vehicle tanks
- Filling protocol describes how the HRS should behave
- Development of protocol dependent on modeling

Accuracy of simplified model is very important

PRHYDE project: focus on Heavy Duty (trucks)

3 PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK ICHS 2021, Edinburgh • Charolais, A. • Air Liquide, Innovation Campus Paris

THIS DOCUMENT IS PUBLIC


2 Modelled cases

THIS DOCUMENT IS PUBLIC

| PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

2) Modelled cases

3 Models descriptions

THIS DOCUMENT IS PUBLIC

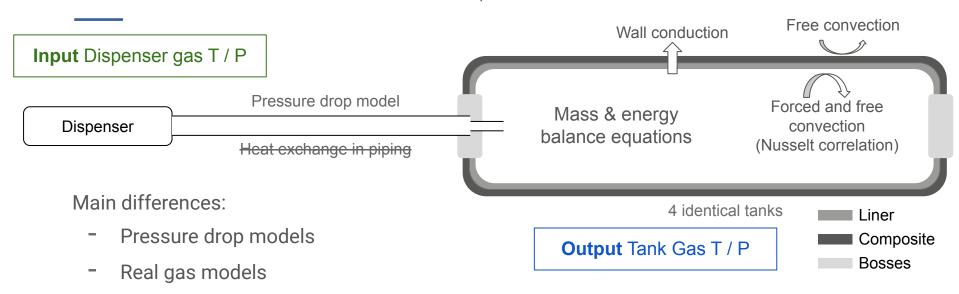
| PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

3) Models descriptions

- Air Liquide SOFIL [1, 2]
- Engie Hyfill [3-6]

THIS DOCUMENT IS PUBLIC

7


- **NREL** H2FillS [7, 8]
- Wenger Engineering H2-Fill [9, 10]

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

H: Protocol for heavy-duty Evolution for the avy-duty Hydrogen refuelling

3) Models descriptions

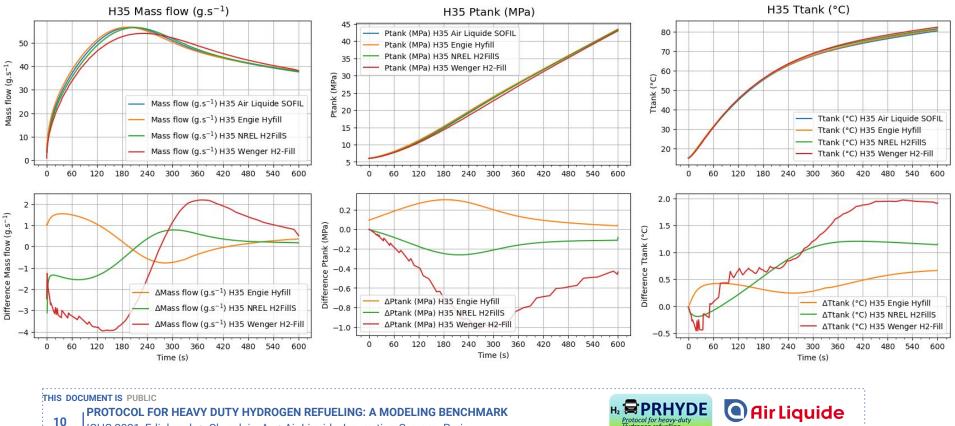
Ambient temperature

PRHYDE

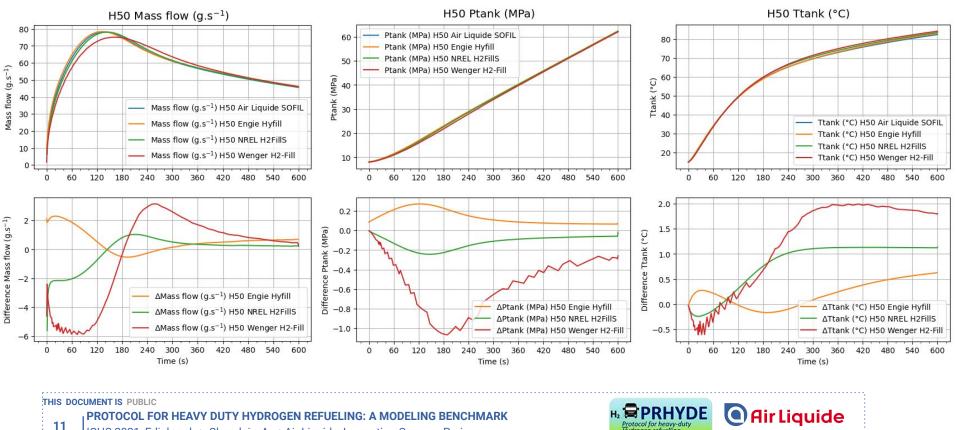
• Air Liquide

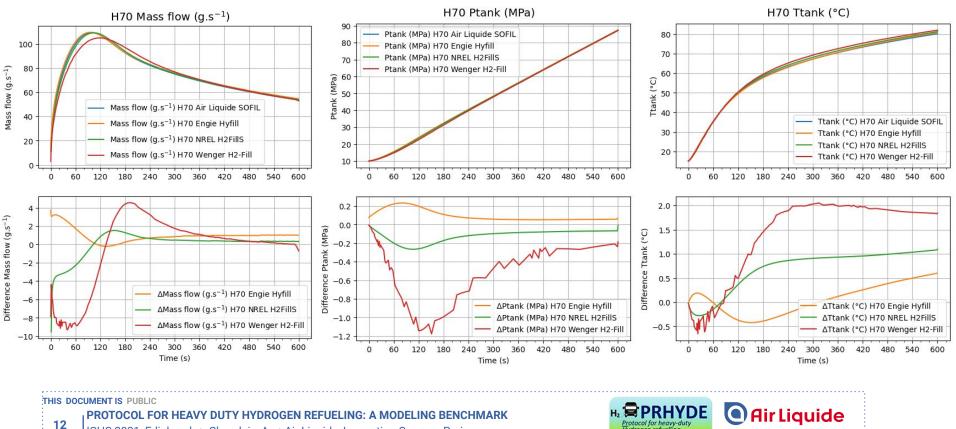
- 1D-Wall conduction (radial: Air Liquide, Engie, Wenger / cartesian: NREL)
- External heat transfer coefficient (fixed: Engie, NREL / Nusselt correlation: Air Liquide, Wenger)

8 PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK ICHS 2021, Edinburgh • Charolais, A. • Air Liquide, Innovation Campus Paris


THIS DOCUMENT IS PUBLIC

Benchmark THIS DOCUMENT IS PUBLIC


PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK


4) Benchmark - H35

4) Benchmark - H50

4) Benchmark - H70

Conclusion

THIS DOCUMENT IS PUBLIC

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

5) Conclusion

- Very similar predictions: less than 2 °C range
- Differences:
 - Real gas equations
 - Bosses modeling
 - Simplified tank geometry implementations
 - Pressure drop formula \rightarrow mass flow

Models used for protocol development in PRHYDE.

Acknowledgment

Fuel Cells and Hydrogen 2 Joint Undertaking: Grant Agreement No 874997

This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

<u>Charolais, A.</u>, Ammouri, F., Vyazmina, E., Nouvelot, Q., Guewouo, T., Greisel, M., Gebhard, M., Kuroki, T., Mathison, S.

Annex

THIS DOCUMENT IS PUBLIC

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

A) Pressure drop models*

d

Air Liquide's SOFIL Sonic flow (P1 > 2 P2)

$$\frac{dm_g}{dt} = C k_v P_1 \sqrt{\frac{\rho_N}{T_1}}$$

Subsonic flow (P1 \leq 2 P2)

 $\frac{dm_g}{dt} = 2 C k_v \sqrt{\frac{\rho_N (P_1 - P_2)P_2}{T_1}}$

Engie's Hyfill
Sonic flow (P1 > 2 P2)

$$\frac{dm_g}{dt} = \rho_1 N k_v Y \sqrt{\frac{P_1}{2\rho_1}} \text{ with } Y = \frac{2}{3} \quad \dot{V}$$
Subsonic flow (P1 ≤ 2 P2)

$$\frac{dm_g}{dt} = \rho_1 N k_v Y \sqrt{\frac{(P_1 - P_2)}{\rho_1}}$$
with $Y = 1 - \frac{2}{3} \frac{P_1 - P_2}{P_1}$
C

IREL's H2FillS Sonic flow (P1 > 2 P2)

$$\dot{V} = 2930 C_{\nu} \sqrt{\frac{(P_1 - P_2)(P_1 + P_2)}{P_1 G T_1}}$$

Subsonic flow (P1 \leq 2 P2) $\dot{V} = 2538C_{v} \frac{P_{1}}{CT_{v}}$

onversion to mass flow

Air Liquide

 $\dot{m} = \frac{\beta \rho \dot{V}}{3600}$ β coefficient \rightarrow handle unsteady flow

PRHYDE

* Wenger model not described

THIS DOCUMENT IS PUBLIC

16

OGEN REFUELING: A MODELING BENCHMARK PROTOCOL FO

21. Edinburgh • Charolais. A. • Air Liquide. Innovation Campus Paris

B) References

THIS DOCUMENT IS PUBLIC

- Bourgeois T, Brachmann T, Barth F, Ammouri F, Baraldi D, Melideo D, Acosta-Iborra B, Zaepffel D, Saury D, and Lemonnier D. 2017. Optimization of hydrogen vehicle refuelling requirements. International Journal of Hydrogen Energy 42:13789–809
- 2. Bourgeois T, Ammouri F, Weber M, Knapik C. Evaluating the temperature inside a tank during a filling with highly-pressurized gas. International Journal of Hydrogen Energy 2015;40:11748-55
- 3. Moran MJ, Shapiro HN, Boettner DD, et al. Fundamentals of Engineering Thermodynamics. John Wiley & Sons, 2010.
- 4. Kunz O, Wagner W. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J Chem Eng Data 2012; 57: 3032–3091.
- 5. Rathore MM, Kapuno R. Engineering Heat Transfer. Jones & Bartlett Publishers, 2010.
- 6. Holman J. Heat Transfer. 10th edition. Boston: McGraw-Hill Education, 2009.
- 7. Monde, M, Woodfield P, Takano T and Kosaka M. 2012. Estimation of temperature change in practical hydrogen pressure tanks being filled at high pressures of 35 and 70 MPa. International Journal of Hydrogen Energy 37:5723-34

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

B) References (continued)

- 8. Monde, M. and Kosaka, M., "Understanding of Thermal Characteristics of Fueling Hydrogen High Pressure Tanks and Governing Parameters," SAE Int. J. Alt. Power. 2(1):61-67, 2013, https://doi.org/10.4271/2013-01-0474
- 9. SAE J2601. Fueling protocols for Light duty gaseous hydrogen surface vehicles. https://www.sae.org/standards/content/j2601_201612/.
- SAE J2601 The Worldwide Standard for Hydrogen Fueling Stations. https://www.sae-j2601.com/wp-content/uploads/2019/04/SAE-J2601-The-Worldwide-Standa rd-for-Hy-drogen-Fueling-Stations.pdf

18

PROTOCOL FOR HEAVY DUTY HYDROGEN REFUELING: A MODELING BENCHMARK

