
Numerical modeling of a moderate hydrogen leak in a 1m3

enclosure with two vents

E Saikali, P Ledac, A Bruneton, A Khizar, C Bourcier,
G Bernard-Michel, E Adam
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Hydrogen (H2) energy applications

• Application domains

Transport (fuel cells, forklifts, cars, emergency backup systems),

Energy conversion,

Hydrogen usage (city gas, combustion).

• Advantages

Green vector of energy (no CO2),

High energy capacity storage.

• Disadvantages

H2/air mixture is highly flammable,

Transparent flame.

• Requirements: R & D

Security, production, storage and distribution (costs, capacity).

Left: [Houssin-Agbomson and Jallais, 2016], right: personal document (ICHS2017, Hambourg).
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Problematic: H2 system indoor usage

• Most frequent accidental scenario

Moderate H2 leakage in confined environments (technical/human error),

Concentration stratification/accumulation.
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Schematic description of the most frequent H2 leakage accidental scenario.

• Risk mitigation

Passive ventilation: reduce H2 accumulation from leakage scenarios.

• Simplified models

Idealized fuel cell models: H2 release in confined/semi-confined environments.
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DRHyS experimental cavity (CEA - Air liquide)

• In the present work we model

Moderate H2 leak (10.4 Nl.min−1) in a two vented configuration (1 m3),

Injection pipe of diameter d = 2.72 cm, release point centered at height 8 cm,

Two vents 96 x 18 cm2 (opposite walls, bottom and top) ,

Assume that the iso-thermal/bar conditions are valid (T = 11◦ C, Pthm = 1 bar),

[Bernard-Michel and Houssin-Agbomson, 2017]

Available experimental data: H2 concentration at 15 minicatharometers
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Industrial theoretical approach (desired)

• Easy, fast . . . but some limitations

• Linden’s based on MTT [Morton et al., 1956]

Three assumptions:

- Entrainment (ue = αW),

- Boussinesq approximation,

- Self-similar solutions.

α entrainment coefficient (assumed constant),
ue entrainment horizontal velocity,
W characteristic vertical velocity.
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CEA private communication

• Entrainment assumption experimental validations in free media

Better predictions reported with α(z ,Ri) [Abraham, 1965], [List and Imberger, 1973].

• Further induced difficulties

Non-Boussinesq flows,

Confined/semi-confined media.

Alternative approach: CFD !!
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CFD: advantages, issues & challenges

• Advantages

Access all flow variables + 3D description (velocity, concentration, pressure, . . . )

• Physical issues

Air & H2: ρamb/ρinj ≈ 14,

Non-stationary fluctuating regime,

Laminar-turbulent transition,

Interior/exterior interactions.
: Low Mach Number vs Boussinesq

• Numerical issues

Low Mach Number vs Boussinesq
[Gray and Giorgini, 1976],

Turbulence models and schemes:
(transition and sharp gradients),

Open boundary conditions
[Desrayaud et al., 2013].

• Challenges

Modeling . . .

Turbulent scales: inertia & mixing (can be very small),

Robust CFD & HPC software,

Cost, resources, . . .
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Previous results/conclusions

• Benchmark: CFD vs exp (1 m3)

[Bernard-Michel et al., 2013], [Tran et al., 2013]

Maximum He concentration (3.5%)

- overestimated in axi-symetric calculations,

- overestimated without turbulence
aaa model (coarse mesh),

- underestimated with FANS (Favre).

Homogeneous layer

- predicted only with FANS.

• Mini-GAMELAN (3.7x10−4 m3)

[Saikali et al., 2019], [Saikali et al., 2020]

LES vs DNS

- underestimated fluctuations,

- plume structure,

BC treatment: should be modeled!
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Present study

• Numerical modeling

DNS: no turbulence modeling (solve all scales),

Model injection and outer regions,

Simulate a steady-state solution.

Main objectives

- Reproduce the bi-layer concentration regime (Linden + exp data),

- Provide a complete flow pattern description (cross-flow, distribution, . . . ),

- Provide 3D reference data that can serve for improving industrial models (α).

• CFD software HPC

TRUST open source code: https://github.com/cea-trust-platform/trust-code
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Low Mach Number (LMN) dimensional governing equations

Conservation equations (mass, momentum, species) + equation of state,

LMN asymptotic analysis → Ptot(x, t) = p(t)︸︷︷︸
thermodynamic

+ M̃a
2

P(x, t)︸ ︷︷ ︸
hydrodynamic

.
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Dρ
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,

ρ =
p

RT

(
Y1

Minj
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)−1

.

ρ mixture’s density, Y mass fraction, M molar mass,

τij = 2µeij , eij = Sij − 1
3δij Skk ,Sij = 1

2

(
∂uj

∂xi
+ ∂ui

∂xj

)
,Y2 = 1− Y1,

u = (ui ) velocity field, µ(x, t) mixture’s dynamic viscosity,

D = 7.72× 10−5 m2.s−1 is the diffusion coefficient (uniform & constant).
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Computational domains

• Meshing

Open source SALOME platform

Two hexahedral non-uniform unstructured meshes

- 250 million & 2 billion cells,

- δ ≈ 1 mm - 4 cm & 0.5 mm - 2 cm

- 5K & 50K MPI procs respectively.

https://www.salome-platform.org/

• Kolmogorov scale

• Cost
Physical time

- 3.5 min (mesh 1)

- 0.5 min (mesh 2 - resumed)

Resources

≈ 12 M hours, IRENE-ROME
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Interpolation & initial conditions

• Mesh 1

Simulated until reaching a steady state (≈ 1 min of physical time),

• Mesh 2

Parallel interpolator of MEDCoupling for initializing the fine simulation.

Mesh 1 Mesh 2
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Fine resolution

• Comparisons

Same deviation which means same cross-flow effect,

Mesh 2 captures (better) the small structures (mainly at the jet border),
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3D flow pattern

• H2 iso-volumes (1.5 %)

Upper interface, deviation + deformation, turbulent (qualitative),

Cavity sufficiently large to avoid plume/wall interactions (Coanda effect).
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Cross-flow (1/2)

• Velocity magnitude time-averaged iso-contours

Horizontal 2D slice (z = 0.1 m),

Symmetrical distribution, counter-rotating vortices, jet deviation/deformation,

Behavior reproduced previously in [Saikali et al., 2019], [Saikali et al., 2020]
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Cross-flow (2/2)

• Axis deviation

Heavy air pushes light H2 to the right,

Entrainement + gravity accelerations keep an upward direction afterwards,

• Axial evolution

Transition + plume regions
[Saikali et al., 2020]
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In/out-flows

• Inflow

Almost uniform,

Classical profile (inverted parabola).

• Outflow

Thin exiting jet,

Back-flow in a shear-layer,

More statistical recording in progress.
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Linden regime

• H2 iso-contours [0-5%]

A clear bi-layer distribution,

System well ventilated (for this configuration),

Very good agreement with experiment,

Maximal concentration far from risk range . . .  0
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Conclusions

DNS results presented for a moderate H2 leakage in a 1 m3 vented cavity,

Results are in good agreement with experimental measurements,

Results show that CFD is a good approach . . . if well resolved,

The ventilation system is very good (for the treated configuration),

Important cross-flow effect . . . but the cavity is large !

The recorded concentration regime is far from the risk range.

• Prospects

Employ the reference 3D data to model α (continuation of [Saikali et al., 2020]),

Improve the boundary conditions (profiles to impose on the vent surface directly).

Thanks for your attention!!

https://github.com/cea-trust-platform/trust-code
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Animation

Velocity magnitude iso-contours in the mid-vertical plane
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