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Hydrogen (H;) energy applications

e Application domains
Transport (fuel cells, forklifts, cars, emergency backup systems),
Energy conversion,

Hydrogen usage (city gas, combustion).

e Advantages e Disadvantages
Green vector of energy (no CO5), H, /air mixture is highly flammable,
High energy capacity storage. Transparent flame.

e Requirements: R & D

Security, production, storage and distribution (costs, capacity).

Left: [Houssin-Agbomson and Jallais, 2016], right: personal document (ICHS2017, Hambourg).
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Problematic: H, system indoor usage
e Most frequent accidental scenario

Moderate H, leakage in confined environments (technical /human error),

Concentration stratification/accumulation.
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[Houssin-Agbomson and Jallais, 2016]
Schematic description of the most frequent H, leakage accidental scenario.

¢ Risk mitigation
Passive ventilation: reduce H, accumulation from leakage scenarios.

e Simplified models

Idealized fuel cell models: H, release in confined /semi-confined environments.
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DRHyS experimental cavity (CEA - Air liquide)

e In the present work we model

Moderate H2 leak (10.4 Nl.min=1) in a two vented configuration (1 m3),
Injection pipe of diameter d = 2.72 cm, release point centered at height 8 cm,
Two vents 96 x 18 cm? (opposite walls, bottom and top) ,

Assume that the iso-thermal/bar conditions are valid (T = 11° C, Py, = 1 bar),

[Bernard-Michel and Houssin-Agbomson, 2017]

Available experimental data: H2 concentration at 15 minicatharometers
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Industrial theoretical approach (desired)

e Easy, fast ... but some limitations

e Linden’s based on MTT [Morton et al., 1956]
Three assumptions:

- Entrainment (u. = aW),

- Boussinesq approximation,
- Self-similar solutions.
« entrainment coefficient (assumed constant),

ue entrainment horizontal velocity,
W characteristic vertical velocity.

CEA private communication

e Entrainment assumption experimental validations in free media
Better predictions reported with a(z, Ri) [Abraham, 1965], [List and Imberger, 1973].
e Further induced difficulties

Non-Boussinesq flows,

Confined /semi-confined media.

Alternative approach: CFD !!
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CFD: advantages, issues & challenges

e Advantages

Access all flow variables + 3D description (velocity, concentration, pressure, .. .)
e Physical issues ¢ Numerical issues
Air & H2: pamb/pinj ~ 14 Low Mach Number vs Boussinesq

i i i [Gray and Giorgini, 1976],
Non-stationary fluctuating regime,
Turbulence models and schemes:

Laminar-turbulent transition, (transition and sharp gradients),

Interior /exterior interactions. Open boundary conditions
[Desrayaud et al., 2013].

e Challenges
Modeling ...
Turbulent scales: inertia & mixing (can be very small),

Robust CFD & HPC software,

Cost, resources, ...
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Previous results/conclusions

e Benchmark: CFD vs exp (1 m*)
[Bernard-Michel et al., 2013], [Tran et al., 2013]

Maximum He concentration (3.5%)

I e Expeinen ]
- overestimated in axi-symetric calculations, R I}
- overestimated without turbulence —
model (coarse mesh), o oo
- underestimated with FANS (Favre). o

Homogeneous layer
- predicted only with FANS.

e Mini-GAMELAN (3.7x107* m%)
[Saikali et al., 2019], [Saikali et al., 2020]

LES vs DNS

- underestimated fluctuations,

z[em]

- plume structure,
BC treatment: should be modeled! °%

z[em)
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Present study

e Numerical modeling
DNS: no turbulence modeling (solve all scales),
Model injection and outer regions,

Simulate a steady-state solution.

Main objectives
- Reproduce the bi-layer concentration regime (Linden + exp data),
- Provide a complete flow pattern description (cross-flow, distribution, ... ),

- Provide 3D reference data that can serve for improving industrial models (c).

e CFD software HPC TRUET

TRUST open source code: https://github.com/cea-trust-platform/trust-code
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Low Mach Number (LMN) dimensional governing equations

Conservation equations (mass, momentum, species) + equation of state,

2
LMN asymptotic analysis — Pi(x,t) = p(t) + Ma P(x,t)
~~ ~——
thermodynamic hydrodynamic
dp 0
at T ax Pu) =0
Opu; 0 oP Ot
ot ok PUt) = gty TP
(9pY1 0 0 8Y1
Yiu;) = Dp
gt T o V) = g ( ax,)
-1
_ P (N, T
PTRT (Minj " Mamb> |

p mixture's density, Y mass fraction, M molar mass,
o
Tij = 2pejj, e = Sjj — (Suskkvsu 1 (3?’ +a”’)7Y2:1—Y1,
u = (u;) velocity field, u(x, t) mixture's dynamic viscosity,
D =7.72 x 1075 m2.s7 1 is the diffusion coefficient (uniform & constant).
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Computational domains

e Meshing
Open source SALOME platform

e Kolmogorov scale

o/n

Two hexahedral non-uniform unstructured meshes 2
- 250 million & 2 billion cells, :
-6~1mm-4cm&05mm-2cm l.;
- 5K & 50K MPI procs respectively.

e Cost
Physical time

- 3.5 min (mesh 1)
- 0.5 min (mesh 2 - resumed)
SFLOME Resources

~ 12 M hours, IRENE-ROME
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Interpolation & initial conditions

e Mesh 1
Simulated until reaching a steady state (= 1 min of physical time),
e Mesh 2

Parallel interpolator of MEDCoupling for initializing the fine simulation.
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Fine resolution

e Comparisons
Same deviation which means same cross-flow effect,

Mesh 2 captures (better) the small structures (mainly at the jet border),
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3D flow pattern

e H2 iso-volumes (1.5 %)

Upper interface, deviation + deformation, turbulent (qualitative),

Cavity sufficiently large to avoid plume/wall interactions (Coanda effect).

External region

External region H2 plume

Injection tube




Cross-flow (1/2)

¢ Velocity magnitude time-averaged iso-contours
Horizontal 2D slice (z = 0.1 m),
Symmetrical distribution, counter-rotating vortices, jet deviation/deformation,

Behavior reproduced previously in [Saikali et al., 2019], [Saikali et al., 2020]
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Cross-flow (2/2)

e Axis deviation
Heavy air pushes light H2 to the right,

Entrainement + gravity accelerations keep an upward direction afterwards,

e Axial evolution
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In/out-flows

e Inflow

Almost uniform,

0.95

0.%0

E
Classical profile (inverted parabola). ™~ °*
e Outflow
0.15
: B : T 010
Thin exiting jet, Eon
Back-flow in a shear-layer, '
More statistical recording in progress.
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Linden regime

2 :
e H2 iso-contours [0-5%)] =

A clear bi-layer distribution, / y |
System well ventilated (for this configuration), £ / m
Very good agreement with experiment, 05 / :
Maximal concentration far from risk range ... ol e 1

2-axis
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Conclusions

DNS results presented for a moderate H2 leakage in a 1 m3 vented cavity,
Results are in good agreement with experimental measurements,

Results show that CFD is a good approach ... if well resolved,

The ventilation system is very good (for the treated configuration),
Important cross-flow effect ... but the cavity is large !

The recorded concentration regime is far from the risk range.

e Prospects
Employ the reference 3D data to model o (continuation of [Saikali et al., 2020]),

Improve the boundary conditions (profiles to impose on the vent surface directly).

Thanks for your attention!!

TRUST

https://github.com/cea-trust-platform /trust-code
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Animation

Velocity magnitude iso-contours in the mid-vertical plane
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