

A CFD Analysis of Liquid Hydrogen Vessel Explosions Using the ADREA-HF Code

9th International Conference on Hydrogen Safety (ICHS 2021)

Ustolin, F., Tolias, I.C., Giannissi, S.G., Venetsanos, A.G. and Paltrinieri, N. 24.09.2021

Content

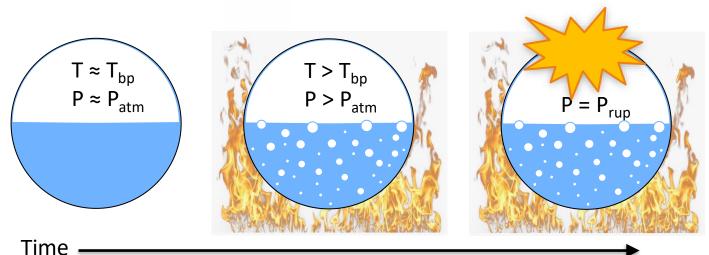
- **M** Introduction
- **Liquid CO**₂ explosion experiments
- BMW safety tests on liquid hydrogen
- **CFD** analysis by using ADREA-HF
 - MADREA-HF code validation
 - Simulation of BMW bursting tank test
- **Conclusions**

Introduction

SH₂IFT

Collaboration with PRESLHY partner NCSR "Demokritos"

Aim of the work: provide critical indications on the Boiling Liquid Expanding Vapour Explosion (BLEVE) theory


- > CFD analysis of BLEVE for liquid CO₂ (LCO₂) and liquid hydrogen (LH₂) tanks
- Study the dynamic of the blast wave (no combustion)

BLEVE

Physical explosion might result from the catastrophic rupture of a tank containing a superheated liquid due to the rapid depressurization

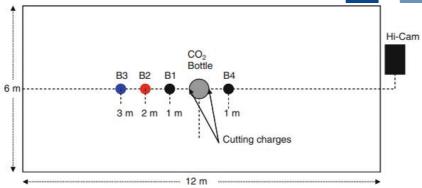
Chain of events leading to the tank rupture

Valid for cryogenic substances

Hot liquid undergoing sudden depressurization in a tank (adapted from [Casal, 2008])

Consequences: <u>pressure wave</u>, <u>missiles</u> and <u>fireball</u> (flammable substances)

Liquid CO₂ explosion tests


Laboratory for Ballistic Research (TNO Defence, Security and Safety)

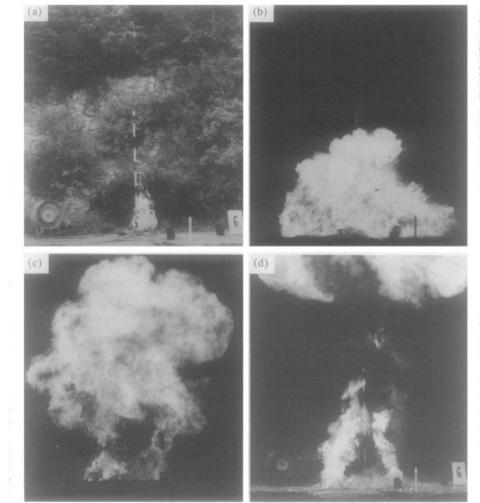
Bunker: 6 × 12 × 4 m

40-I LCO₂ bottle wrecked by explosive:

- D = 0.23 m
- h = 1.37 m
- fd = 95%
- T = 290 K
- P = 5.2 MPa

[van der Voort, M.M., van den Berg, A.C., Roekaerts, D.J.E.M. et al. Blast from explosive evaporation of carbon dioxide: experiment, modeling and physics. Shock Waves 22, 129–140 (2012)]

BMW safety tests


Bursting tank scenario test

Ten single wall vessels insulated with foam and ruptured with explosives:

- V = 120-1
- $P = 0.2 \div 1.5 MPa$
- $m_{1H2} = 1.8 \div 5.4 \text{ kg}$

Many uncertainties (e.g. filling level,

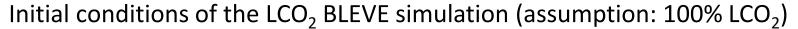
initial temperature, tank dimensions) [Pehr, K., 1996. Aspects of safety and acceptance of LH2 tank systems in passenger cars. Int. J. Hydrogen Energy 21, 387–395]

CFD analysis methodology

- CFD code: ADREA-HF
- Homogeneous Equilibrium Model (HEM)
- ☐ Raoult's law for ideal mixture
- ☐ k-epsilon turbulence model with wall function
- ☐ Peng-Robinson and Redlich-Kwong-Mathias-Copeman EoS were tested

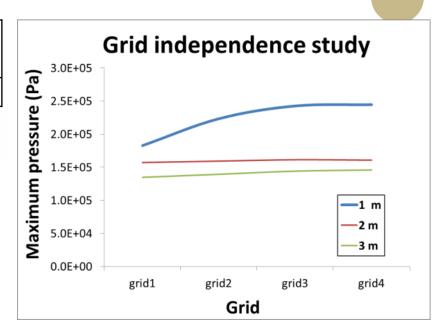
The code was validated with the LCO₂ experiments and then employed for the simulation of the LH₂ BMW explosion tests.

CFD analysis methodology


The Navier-Stokes equations, continuity equation, energy equation of the mixture and conservation equation of species. The Favre-averaged equations are (Einstein summation convention is used):

$$\begin{split} &\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial x_{i}} = 0, \\ &\frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{u}_{i}}{\partial x_{j}} = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu_{eff} \left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} + \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} \right) \right) + \overline{\rho} g_{i}, \\ &\frac{\partial \overline{\rho} \widetilde{H}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{P r_{t}} \frac{\partial \widetilde{H}}{\partial x_{j}} \right) + \frac{D \overline{p}}{D t}, \\ &\frac{\partial \overline{\rho} \widetilde{q}_{k}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{q}_{k}}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\frac{\mu_{t}}{S c_{t}} \frac{\partial \widetilde{q}_{k}}{\partial x_{i}} \right) + \overline{R}_{k}, \quad k = 1, \dots, N_{subs}, \end{split}$$

Assumption: instantaneous and uniform rupture of tanks in all directions



Pressure	Temperature	Density	Mass
(Pa)	(K)	(kg/m^3)	(kg)
5,200,000	289.03	772.54	30.90

Computational meshes (double symmetry along y- and x-axis):

- × Grid 1: 33,792 cells
- × Grid 2: 113,960 cells
- × Grid 3: 265,832 cells
- × Grid 4: 469,560 cells

Relative error between grid 3 and $4 \le 1\%$ for all three sensors

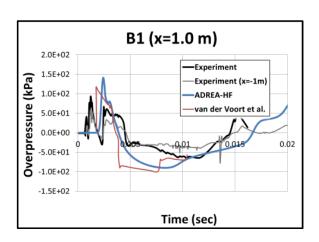
LH₂ simulation configuration

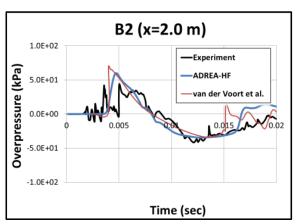
Characteristics of the simulated LH₂ tank and dimensions of the domain (double symmetry along y- and x-axis \rightarrow ¼ tank)

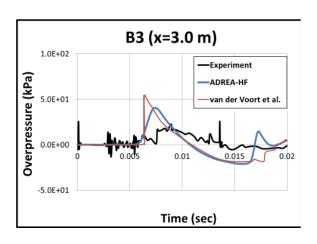
Tank	Volume	Area	Height	Orientation	Height from	Domain dimensions
	(litres)	(m^2)	(m)		the ground (m)	(m)
LH_2	120	0.177	0.706	Horizontal	1	$10 \times 10 \times 11$

Initial conditions of the LH₂ BLEVE parametric analysis

Simulation	Phase and	Pressure	Temperature	Density (kg/m³)	Mass
	status	(Pa)	(K)		(kg)
LH2	Saturated L	1,101,325	32.10	42.42	1.27
GH2	Superheated V	1,101,325	32.93	15.00	0.45
LH2-GH2	L and V	1,101,325	32.10, 32.50	42.42 (L), 16.30 (V)	0.77

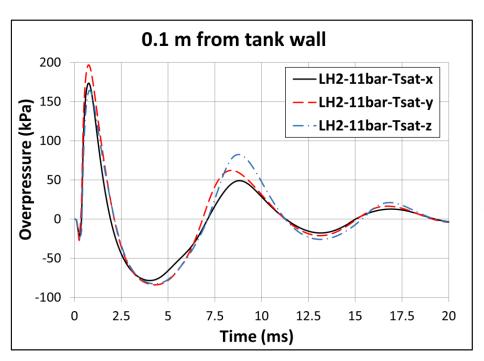

Combustion was not simulated

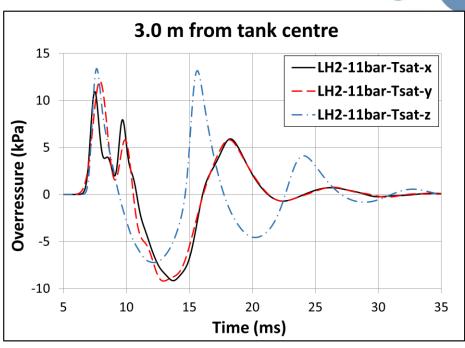

fd = 37%


ADREA-HF code validation

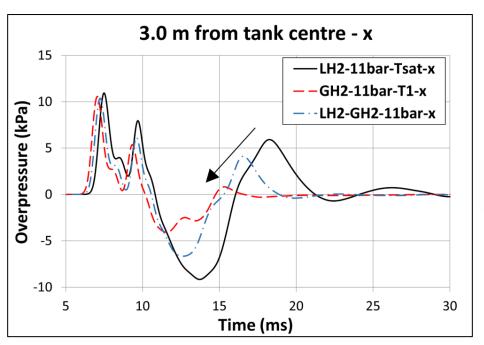
SH₂IFT

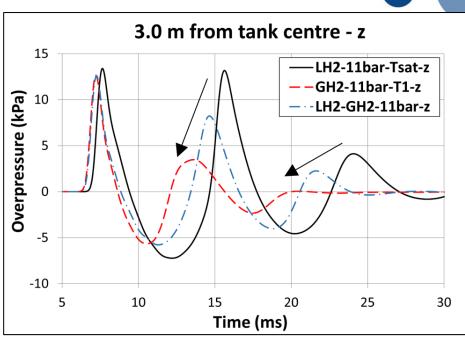
Results of the LCO₂ BLEVE simulations: peak overpressure of the blast wave in three different positions




Experimental results are disturbed by the blast wave reflection on the bunker walls

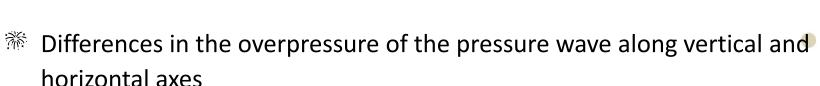
BLEVE blast wave overpressure

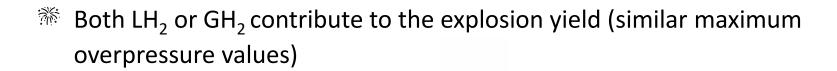




Second pressure peak at vertical axis as high as the first one at 3 m from the tank centre

BLEVE blast wave overpressure





- second pressure peak at horizontal axis decreases with GH2,
- third press peak manifests only along vertical axis when LH2 is initially present
- no large differences in <u>max overpressure</u> yet in <u>explosion duration</u>

Conclusions

- GH₂ simulation produces the shortest explosion, thus the smallest impulse
- 36 Two pressure peaks for 100% GH₂, while three peaks for the 100% LH₂
- Maximum overpressure was not mainly affected by the hydrogen mass, while this parameter affects the blast wave impulse.

Thank you for your attention

Project coordinator (Sintef):

Anders Ødegård: Anders.Odegard@sintef.no

WP 4 (LH₂ modelling) leader:

Lars Odsæter: lars.odsater@sintef.no

WP 4 researchers:

Federico Ustolin: federico.ustolin@ntnu.no
Nicola Paltrinieri: nicola.paltrinieri@ntnu.no