

Designing an inherently safe H₂ infrastructure:

Combining analytical, experimental, and numerical investigations to optimize H₂ refueling stations safety by passive mitigation

Deborah Houssin-Agbomson | *AL R&D* Audrey Herzig, Andrew Autuore, Mike Molesworth, Victor Riso, Ajay Prasad | *UD* Aurélien Soubeyran, Bo Lu, Zhehao Wei | *AL R&D*

> International Conference on Hydrogen Safety September 19-21 2023

Context & Objectives

Context

Clean Hydrogen and **Fuel Cell Electric Vehicles** (FCEV) have developed significantly in the past years in order to respond appropriately to the challenges associated with the **transition to a Net-Zero Carbon Economy**

Associated infrastructure, in particular, **Hydrogen Refueling Stations** (HRS) were also developed to respond to the **increasing needs for Hydrogen in the mobility** sector

Challenges

The need to mainstream Hydrogen in the mobility sector requires **higher levels of accessibility of HRS** in the **public environment**

Thus, it is necessary to **deploy inherently safe hydrogen refueling stations** without increasing **footprint** of such infrastructure because of excessively **drastic safety distances and barriers**

Study objectives

Combine design, conception and aesthetic of HRS for a better integration in urban environment

⇒ while keeping safety consideration as the top priority

Gas-to-Gas H₂ Refueling Station Generalities & Scope of the study

Focus on confined parts of the HRS

- Processing container
- Dispenser

Design concepts

Concepts retained *Criteria & Final choice*

Processing container \rightarrow *louvered walls and v-shaped roof*

Criteria

- significantly different from existing
- assessable concept
- not too much costly
- easy-to-deploy
- time-to-market considerations

$\textbf{Dispenser} \rightarrow \textbf{conical}$

How to assess Risk & Safety of the concepts?

Concrete cases

Risk analysis & consequences assessment - Methodologies and generic calculations

- 1 Description of the studied case
- 2 Hazard identification
- **3** Severity assessment
- 4 Interpretation & Mitigation
- 5 Final design

Potential safety requirements in RCS, but:

- no specification on how to assess the severity of a feared event
- and rarely definition on methods/means to respect these requirements...

Identification of the phenomena and associated consequences

Risk analysis and Mitigation means proposal

Designing an inherently safe H₂ infrastructure | ICHS 2023 - ID269

• Air Liquide

Means for Severity assessment of feared events

Existing assessment means

Non-exhaustive list

Complementary approaches

- Analytical modelling | HyRAM, PHAST, e-laboratory, non-public tools... (ALDEA for AL)
 For quick and simple calculations
- Numerical simulations (CFD) | FLACS, FLUENT...
 For complex geometries and scenarios, numerical experiments, extrapolation
- Experiments | Several test facilities and collaborative platforms
 For validation and specific scenarios

and... Define and Evaluate mitigation means

Concepts, Equipment, Protocols...

Evaluation of dispenser concepts

Studied cases

Method

 Pre-calculations with analytical approaches to size the Dispenser mock-up (Linden 1999)

- Build-up experiments with natural ventilation Concentration distribution thanks to minicatharometers in near-real scale mock-up
 - with He flow rates from 5 to 100 NL.min⁻¹
 - for different variants of the design

- Extrapolation with numerical simulations
 - for 120 g.s⁻¹ which is commonly the maximum flow rate in a dispenser

Air Liquide

Experimental results

Ventilation mode and design of D2-dispenser give the best performances, i.e. the lowest concentrations, contrarily to D3-dispenser

Overview of experimental measurements vs analytical calculations

■ Maximum concentrations → from 5 and 100 NL.min⁻¹ at steady state

Release flow rates	5 NL.min ⁻¹		50 NL.min ⁻¹		100 NL.min ⁻¹	
Approach	Exp.	Linden	Exp.	Linden	Exp.	Linden
D1-dispenser	0.8%	0.5%	2%	2.4%	2.3%	3.8%
D2-dispenser	0.7%	0.3%	1.3%	1.4%	1.4%	2.3%
D3-dispenser	6.3%	-	26%	-	36%	
D4-dispenser	0.8%	0.8%	N/A	2.4%	4.5%	5.6%

At highest flow rates, Linden approach over-predicts maximum concentration
 For same ventilation areas, conical shape (D1) is more efficient than cylindrical dispenser (D4)

Extrapolation with numerical calculations

- Preliminary investigations with D2-dispenser for 120 g.s⁻¹ release rate
 - 30%-H₂ is largely exceeded
 - However, if the release is stopped, acceptable concentration levels are found in 10 s
 - In case of ignition at stoichiometry (30%-H₂), considering ventilation opening as explosion venting panels, maximum internal overpressure would be lower than 50 mbar (calculated by Molkov et al. approach (1999)) → inducing deformation of the dispenser but no destruction, and no or limited fragments

(coming... interesting experiments on ignition of flammable mixtures in a dispenser led by HSE in the framework of MultHyFuel project)

- ⇒ These results are very preliminary and will be refined for the next steps of this collaborative research work
 - Need of more validation, a better calibration of the numerical model and associated parameters with an expert

Air Liquide

Evaluation of processing container concepts

19 THIS DOCUMENT IS PUBLIC

Designing an inherently safe H₂ infrastructure | ICHS 2023 - ID269

Processing container concept

Studied cases

Method

- Investigations in two-steps: first on roof inclination (1), and after combination of inclined roof and louvered walls (2)
- Build-up experiments with natural ventilation Concentration distribution thanks to minicatharometers in a 1-m³ enclosure
 - with He flow rates from 5 to 100 NL.min⁻¹
 - for different variants of the design
- Experimental investigations on visualization of ventilation fluxes paths
 - with immersed down scaled mock-up Archimedes number approach
 - with smokes outside the enclosure
- Further investigations with SimScale online numerical tool

 Roof inclination & Louvered walls for natural ventilation and build-up mitigation

Air Liquide

Processing container concept

Experimental measurements | Roof inclination

■ Maximum concentrations in a 1-m³ enclosure \rightarrow from 5 and 100 NL.min⁻¹ at steady state

Release flow rates	5	5 NL.min ⁻¹	20 NL.min ⁻¹	50 NL.min ⁻¹	100 NL.min ⁻¹
Configuration 1		1.4%	2.5%	4%	8.5%
Configuration 2	/	1.6%	3.8%	7%	14%
Configuration 3	18%	0.8%	2.1%	3.9%	7.5%
Configuration 4	40%	0.8%	2%	3.5%	4.5%
Configuration 5a	V	0.3%	1.4%	3%	1.5%
Configuration 5b	a b	1%	2.3%	5%	6%

⇒ Double inclination of the roof fosters He build-up mitigation
 The more inclined the roof is, the lower the maximum concentration in the enclosure is

Processing container concept

Experimental measurements | Roof inclination & Louvered walls

■ Design comparison → Louvered vs Plain walls & Flat vs Inclined roof for 100 NL.min⁻¹

⇒ Louvered walls mitigate accumulation inside the container
 With louvered walls, positive impact of roof inclination on accumulation limitation is significantly reduced (± 2.5%)
 Benefits of inclined roof are higher when walls are plain (4.5% vs 8.5%-He)

Air Liquide

Processing container

Visualization of ventilation fluxes & Distribution

- Down scaled mock-up with Archimedes number approach
- Smokes with the 1-m³ enclosure

Numerical simulation with SimScale

⇒ Inlet fluxes by vertical louvers Outlet fluxes by the roof

Conclusions

- A novel design concept was proposed by students from the University of Delaware for the hydrogen refueling stations by modifying physical structure
 - A fruitful cross-disciplinary experience
- Analytical, experimental and numerical approaches were combined in order to evaluate hydrogen concentration and distribution
 - Significant positive effects on accumulation limitation in confined spaces thanks to the specific studied designs were demonstrated, with good agreement and complementarity between the investigated approaches

For the experimental part

- Helium was used as a surrogate of hydrogen in order to work safely
- Near real-scale mock-ups were constructed for the dispenser study
- Down-scaled mock-ups for the processing container
- This work highlighted that analytical calculations using Linden approach in most cases overpredict the helium concentration compared to the results obtained experimentally
- Numerical simulation was investigated for dispenser and container topics
 - Numerical simulations seem to match with experimental observations
 - However, at this stage, the preliminary results obtained are more qualitative than quantitative
 - Further work is required in order to be able to extrapolate the experimental results for other sizes and designs
 - Warning should be made about the use of CFD via tools available online; numerical simulations require expertise

Designing an inherently safe H_2 infrastructure: Combining analytical, experimental, and numerical investigations to optimize H_2 refueling stations safety by passive mitigation

> CLEAN MOBILITY Moriguide

D. Houssin-Agbomson, A. Herzig, A. Autuore, M. Molesworth, V. Riso, A. Soubeyran, B. Lu, Z. Wei, A. Prasad

Thank You

deborah.houssin@airliquide.com

Air Liquide

r Liquide

Hydrogen Mobility Europe