

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Hydrogen Safety in Canada – CNL Perspective

Z. Liang, H. Fritzsche, N. Gnanapragasam and I. Castillo (<u>Ian.Castillo@cnl.ca</u>)

Chalk River Site of CNL

https://www.cnl.ca

ICHS – Quebec City – Sep 20th, 2023

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

OFFICIAL USE ONLY / À USAGE EXCLUSIF

Outline

- CNL hydrogen safety
- Canadian landscape
- Evolving trends and opportunities
- Improvements and capabilities of future
- A National coordinated approach

Attendees of Hydrogen Safety Workshop, November 25, 2022

CNL's Hydrogen Safety Experience and Capabilities

Supporting hydrogen safety in Canada with 50 years of experience in nuclear and other industries

- Comprehensive R&D Program on large-scale experimentation of H₂ behavior and safety analysis codes
- Unique experimental techniques of hydrogen interaction with materials, from CANDU[™] reactors experience
- Proven catalytic H₂/air recombiner technologies for hydrogen mitigation and risk management
- Core experience and capabilities for hydrogen risk assessments and hazard analysis

Hydrogen in Materials

Hydrogen Safety Management

Hydrogen Risk Assessments

Hydrogen Landscape in Canada

Existing Industry

- Total revenues of \$527 M
- \$412 M in revenues from product sales
- \$98 M in revenues from the provision of services
- \$17 M in revenues from R&D contracts and other sources
- RD&D expenditures of \$125 M
- Employment of ~ 4,300 FTEs

New Industry

NRCan, "Hydrogen Strategy for Canada - Seizing the Opportunities for Hydrogen," Natural Resources Canada, Ottawa ON, 2020 December.

Current Hydrogen Safety Landscape in Canada

Sample of the landscape

Organization	Capabilities	Operating Structure		
CNL	 Hydrogen materials development, testing and modelling Hydrogen safety device development and sale Hydrogen behaviour experimentation and analysis Safety risk assessment and RCS gaps identification 	 Private operator, government owned entity Activities in hydrogen production, storage, materials and safety. Hydrogen area is one of the pillars within the Science and Technology. 		
NRC	 Safety risk assessment and RCS gaps identification Pipeline materials testing, bio-corrosion and coatings 	 Federal government entity Activities in hydrogen are focused within the Energy, Mining and Environment Research Centre 		
UQTR	 CFD simulations and models to optimize sensor position, ventilation set-up, leak events, and ignition behaviour Analytical models including hydrogen and methane jets extent, gas stratification in enclosure 	 Academic institution UQTR operates three institutes, one of which is the Hydrogen Research Institute 		
Alberta Innovates	 Pipeline test facilities for flow and corrosion characteristics High pressure testing of materials with hydrogen Underground test capabilities for pipeline and storage 	 Alberta government entity Activities in hydrogen are focused within two sister organizations – C-FERtech and InnoTech 		
CSA Group	 Standards development through participation on hydrogen related task forces, review of upcoming research and feedback on draft standards Hydrogen codes and standards working group 	 Standards organization, independent entity Develops standards in 57 areas including hydrogen 		

National Hydrogen Safety Workshop

Objectives and Outcomes

- Look into gaps, skills, opportunities, and funding mechanisms for hydrogen deployment
- Identify safety gaps that should be addressed using existing or future Canadian capabilities
- Leverage unique capabilities and expertise of nuclear hydrogen initiatives
- Discuss emerging opportunities and potential areas of future collaboration between organizations
- Network with international stakeholders with an interest in hydrogen safety

H₂ Safety Workshop 2022, November, Ottawa 68 Canadian and international attendees

Understanding Industry Needs for Hydrogen Safety

A listening campaign based on interviews, surveys and discussions

Laboratoires Nucléaires

Canadien

aboratorie

1	Enbridge [Gas distribution, Pipeline]	11	Evraz North America [Steel and Pipeline OEM]	21	TSSA (Technical Standards and Safety Authority) [Regulator]
2	TC Energy [Gas distribution, Pipeline]	12	HTEC [Hydrogen Refueling Stations, Engineering]	22	CSA Group [Standards Developer]
3	ATCO [Engineering, Logistics, Holding]	13	Next Hydrogen [Electrolyser OEM]	23	SCC (Standards Council of Canada) [Government]
4	Fortis BC [Gas distribution, Pipeline, BC]	14	Hatch [Professional Services, EPC]	24	Transport Canada (MVTC) [Government, Research Institute]
5	Gazifere [Gas distribution, Pipeline, Quebec]	15	Thor Hydrogen [Professional Services, EPC]	25	ABS (American Bureau of Shipping) [Marine Regulator]
6	Energir [Gas distribution, Pipeline,	16	Atura Power [Ontario Energy Company]	26	AECOM [Professional Services, EPC]
7	Quebec] C-FER (Alberta Innovates)	17	CHFCA (Canadian Hydrogen & Fuel Cell Association)	27	Jacobs [Professional Services, EPC]
•	[Research Institute, Oil & Gas]		[Industry Association]	28	Lakeside Process Controls
8	NRC [National Lab, Research Institute]	18	CAFC (Canadian Association of Fire Chiefs) [Industry Association]	29	Canada Trade Commissioners Office, Mexico City [Government]
9	UQTR [University]	19	Energy Safety Canada (ESC) [Industry Association]	30	HSL (Health & Safety Labs, UK) [National Centre]
10	WSP [Professional Services, EPC]	20	PRCI (Pipeline Research Council International, US) [Industry Association]	31	NRCan [Government]

New Opportunities for Hydrogen Safety Expertise (1/2)

5 Canadian Sectors that overlap with International Energy Transition

1. Natural gas displacement:

- Increased blending of hydrogen in gas pipelines
- Replace natural gas used as a H₂ feedstock for NH₃, steel, chemicals production

2. Synthetic petroleum products:

- New synthetic diesel and kerosene products (sustainable aviation fuel) for maritime and aviation industries
- H₂ to be produced from different locations and transported
- **3. Energy transition economic products:**
 - Low carbon intensity H₂ for oil production and enrichment in the medium-term

Source: Swagelok

New Opportunities for Hydrogen Safety Expertise (2/2)

5 Canadian Sectors that overlap with International Energy Transition

4. Transport vehicular fuel:

- H₂ used as a fuel hard to decarbonize with other alternatives
- Transport trucks, buses, rail, boats, aviation, and domestic shipping

5. Renewable electricity storage:

- Avoid the intermittency and to capture the energy from renewable sources such as wind and solar
- H₂ as a storage medium for short-term and long-term applications

Source: NRDC

Hydrogen Safety Expertise (1/3)

Strategic Improvements:

- **Hydrogen safety knowledge** with entities or companies for consultation to setup hydrogen facilities.
- **Regional and national process or procedure** to setup new hydrogen facilities
- National coordination to alleviate gaps in Regulations, Codes, and Standards (RCS) to standardize risk assessments
- Experts and R&D facilities on hydrogen safety to meet the industry demand
- Specific and holistic strategy on hydrogen safety, forecasting the need to grow safety expertise

Source: Joint Research Centre

OFFICIAL USE ONLY / À USAGE EXCLUSIF

Hydrogen Safety Expertise (2/3)

Capabilities to Support Deployment:

- Need Hydrogen Safety Implementation plans on Major Hydrogen Infrastructure Projects in Canada
- Need R&D support for advancing existing safety standards relating to hydrogen or natural gas or blended gases
- Need Risk assessment and modelling of hazards from leaks in pipelines carrying hydrogen and other gas blends
- Need Emergency or accident scenario mitigation protocols and tools for specific hydrogen end-use or application

Source: MSA <u>Hydrogen Safety: Standards and Technologies</u>

Hydrogen Safety Expertise (3/3)

Case Studies for Pipeline Industry:

- **High-Temperature Hydrogen Attack** (HTHA) damage investigations in carbon steels and mitigation
- Estimation of hydrogen blending limits based on embrittlement testing of materials used in existing natural gas pipelines
- Leak **detection** and leak **mitigation** in pipelines carrying hydrogen and natural gas blends
- Materials compatibility testing and qualification for in-service equipment to handle blended hydrogen

Source: Elsevier

To find out more or learn how to get involved, visit

www.ch2cs.ca

or email usat

hydrogen@cnl.ca

We look forward to hearing from you

THE CANADIAN HYDROGEN SAFETY CENTRE

ENABLING CANADA'S HYDROGEN FUTURE

Canadian Hydrogen Safety Centre Canadien De Sécurité De L'hydrogène

Canadian Hydrogen Safety Centre

Mission:

Deliver <u>tangible hydrogen safety solutions</u> across multiple industrial sectors and regions

Objectives:

- Forecast industry needs and prioritize activities to align with sector growth
- Coordinate Canada's hydrogen safety expertise and capabilities
- Support the development and implementation of codes, standards, and regulations
- Enable access to infrastructure, facilities, and expertise to develop, test, validate, qualify, and certify safety equipment and systems
- Serve in an advisory capacity to governments, regulators, policy makers, and industry on safety issues, events, and solutions

OFFICIAL USE ONLY / À USAGE EXCLUSIF

Summary

Canada is mobilizing on H₂ Safety

- Actively engage in H₂ Safety
- Preparing the foundation for the needs of the emerging H₂ sectors
- Maintain a level of safety on the existing traditional hydrogen sectors
- Working as one team to create a Canadian Hydrogen Safety Centre for the Nation!

Hydrogen Safety Section Head

Zhe (Rita) Liang

E-mail: <u>zhe.liang@cnl.ca</u> Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens Materials Science Section Head

Helmut Fritzsche

E-mail: <u>helmut.fritzsche@cnl.ca</u>

Infrastructure & Systems Integration Section Head

Nirmal Gnanapragasam

E-mail: <u>Nirmal.Gnanapragasam@cnl.ca</u>

OFFICIAL USE ONLY / À USAGE EXCLUSIF

Head of Hydrogen & Tritium Technologies Directorate

Ian Castillo

E-mail: ian.castillo@cnl.ca