Thermocouple thermal inertia during refueling of hydrogen tanks: CFD validation

September 20th, 2023

THIS DOCUMENT IS PUBLIC

Ren V., Lodier G., Ammouri F. Air Liquide, Innovation Campus Paris (France) vincent.ren@airliquide.com Horizon 2020 European Union Funding for Research & Innovation

Context PrHyde project

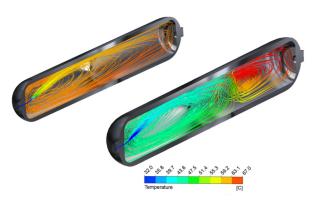
PrHyde: Protocol for heavy-duty Hydrogen refuelling

- Develop **recommendations** and **standardization** for **heavy duty refuelling protocol** for compressed gaseous hydrogen up to 700 bar
- Constraints for the protocols: fast, cost-effective and safe

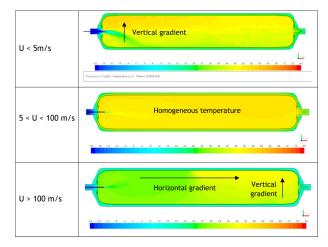
Complementary approaches

- Experimental approaches (monitored refueling tests)
- Numerical approaches:
 - 0D/1D transient models (ex: SOFIL...)
 - 2D/3D Computational Fluid Dynamics (CFD) simulations

2 THIS DOCUMENT IS PUBLIC


Context Why CFD?

A safety recommendation from SAE J2601: T_{gas} < 85°C everywhere


- Temperature gradient
- Various stratification regimes

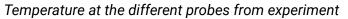
CFD's purpose in the project

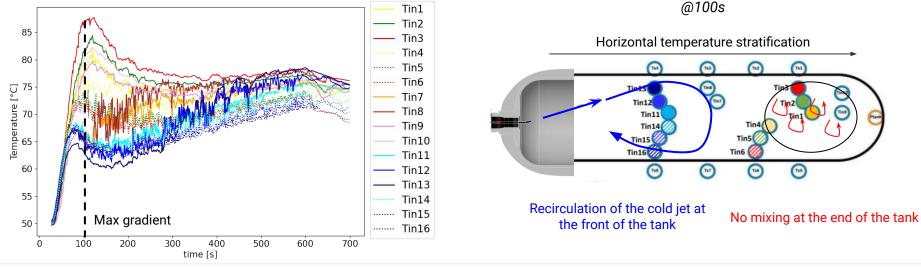
- Build a reliable modeling strategy validated against experimental data
- Bring understandings to the physics involved during the refueling tests
- Give modeling recommendations

Different modeling parameters, different results

CFD results from HyTransfer project

4 THIS DOCUMENT IS PUBLIC


Filling of an Hexagon tank (165L - type IV), tested at Nikola Motor (June 2021) 20 to 700 bar in ~600s


- Gas is precooled to -40°C
- Injector tilted upwards

Case presentation

Experimental results

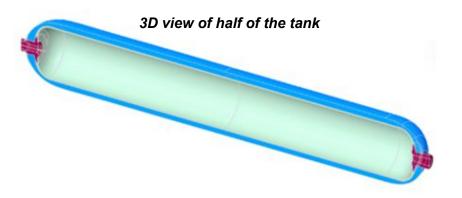
• High temperature gradient experimentally measured

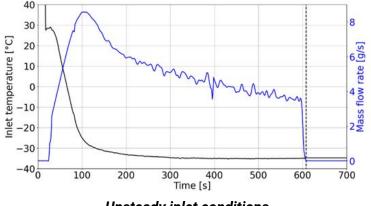
Expected flow behaviour according to measurements

Case presentation CFD model

Geometry

• 3D geometry - ½ volume of the tank

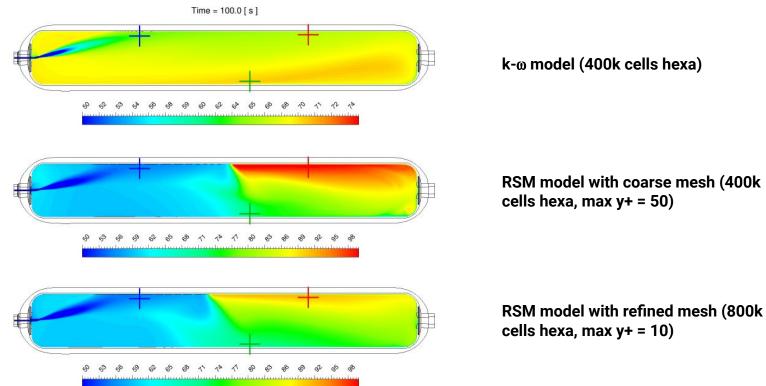

Models


- CFD tool: ANSYS Fluent
- H_2 real gas from NIST tables \Rightarrow (P,T) dependent
- URANS + heat transfer
- Turbulent model: RSM
- Gravity

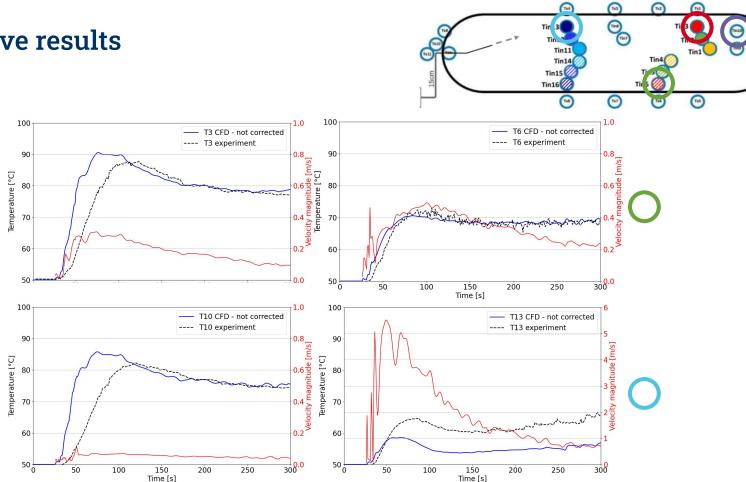
Boundary conditions for the CFD simulation from SOFIL

- Inlet mass flow rate and temperature
- Ambient temperature
- Heat exchange with ambient air
- Half tank with symmetry

CPU time: ~10000 hours



Unsteady inlet conditions

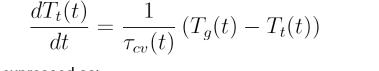

Results Influence of the turbulence model¹

J. Martin et al., Influence of the turbulence model in the CFD simulation of hydrogen tank Filling by an impinging oblique jet, IJHE 2023

Results Quantitative results

Thermocouple thermal inertia during refueling of hydrogen tanks: CFD validation

Results The thermocouple delay model

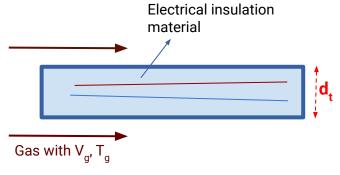


Objective

• Estimate the delay between the temperature measured by the thermocouple and the gas temperature around it

Model

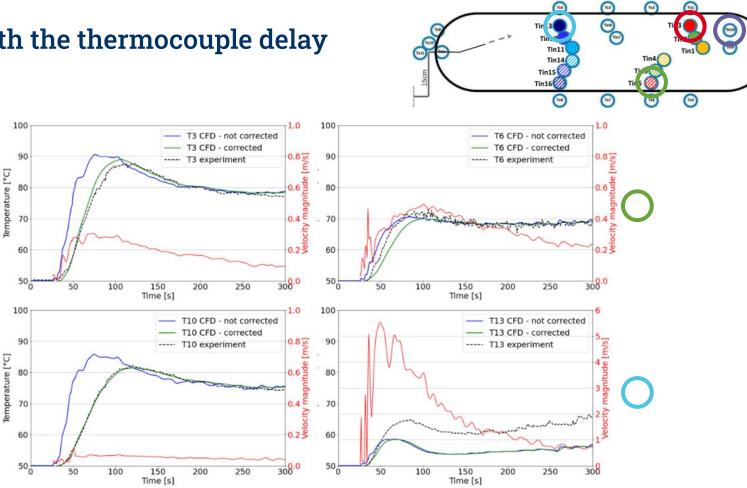
• With an energy balance applied on the thermocouple extremity, we have


• τ_{cv} can be expressed as:

$$\tau_{cv}(t) = \frac{m_t C p_t}{k_t(t) S_t}$$

• And the convective heat transfer coefficient:

$$k_t(t) = f(Nu_t, \lambda_t, d_t)$$


 \Rightarrow We have a relation between T_g and V_g (available with CFD) and T_t (measured)

Schematic view of a thermocouple

Results Results with the thermocouple delay

Thermocouple thermal inertia during refueling of hydrogen tanks: CFD validation

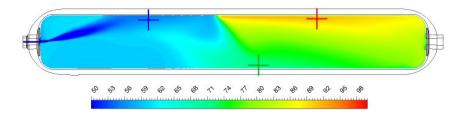
Conclusion

On turbulence models

- Fairly good predictive performances for RSM for tilted injector configurations compared to eddy viscosity models
- A bit more expensive

On thermocouple thermal inertia

- A methodology has been proposed
- Part of the departure between the numerical and the experimental results has been recovered

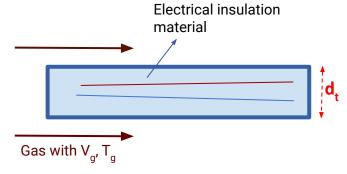

Perspectives

• The methodology can be further validated on other configurations (defueling cases, vertical tanks...)

Conclusion

Thank you for you attention! Contact: vincent.ren@airliquide.com

Model The thermocouple delay model


Numerically

• τ_{cv} can be written as a function of d_t

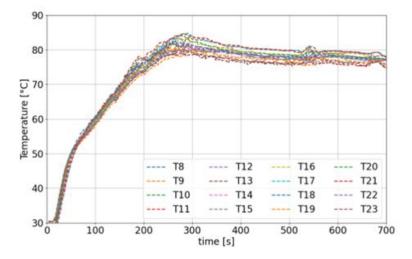
$$au_{cv}(t) = rac{m_t C p_t}{k_t(t) S_t} = rac{
ho_t V_t C p_t}{k_t(t) S_t} pprox rac{
ho_t d_t C p_t}{4k_t(t)}$$

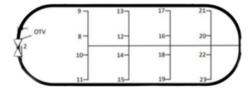
• k, is calculated with Nusselt correlation ¹

$$k_t = rac{N u_{d_t} \lambda_g}{d_t}
onumber N u_{d_t} = 0.3 + rac{0.62 R e_{d_t}^{1/2} \operatorname{Pr}^{1/3}}{\left[1 + \left(rac{0.4}{Pr}
ight)^{2/3}
ight]^{1/4}} \left[1 + \left(rac{R e_{d_t}}{282000}
ight)^{5/8}
ight]^{4/5}$$

Schematic view of a thermocouple

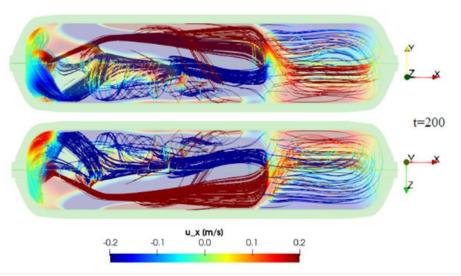
 \Rightarrow We have a relation between T_a and V_a (available with CFD) and T_t (measured)


¹S. W. Churchill and M. Bernstein (1977)

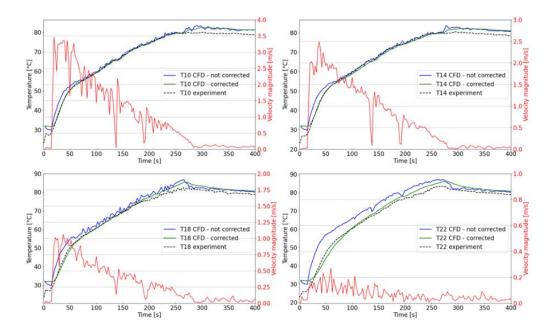

Another case Experimental results

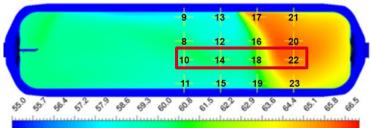
Filling of an Hexagon tank (240L - type IV)

- 20 to 700 bar in ~700s
- Gas is precooled to -30°C
- Injector tilted upwards and sideways

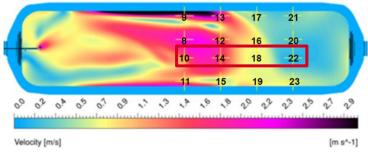


Temperature at the different probes from experiment




Air Liquide

Corresponding CFD results @200s



Another case Quantitative results with the thermocouple correction

Temperature [°C]

Temperature and velocity fields @200s

