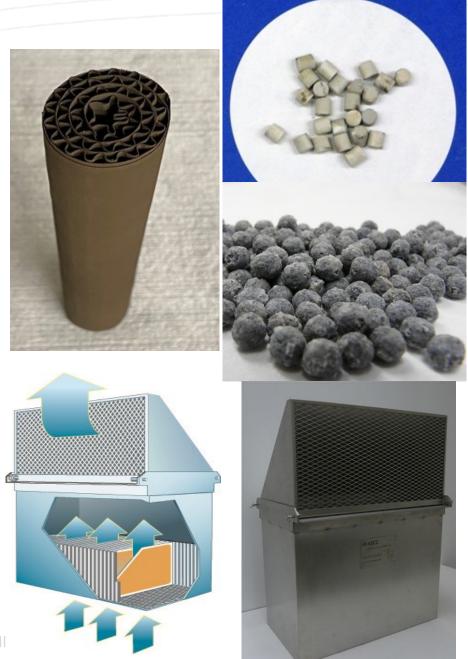
OFFICIAL USE ONLY / À USAGE EXCLUSIF


Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Hydrogen Recombiners for Non-Nuclear Hydrogen Safety Applications

ICHS2023, Quebec City, Canada

2023 SEPTEMBER 20

L Gardner (lee.gardner@cnl.ca), Z. Liang, J. Murphy, B. Ibeh, M. Hurley and S. Cotosman

UNRESTRICTED / ILL

Outline

- Background and Motivation
- Facilities and Experimental Set-up
- Results and Discussion
 - H₂ Recombination Rate and CO Tolerance
 - Low Temperature Performance
- Conclusions

UNRESTRICTED / ILLIMITE

• H₂ accumulation in confined and semi-confined H₂ applications is a concern

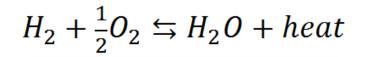
- Sufficient ventilation
- Alternative mitigation strategies (H₂ recombiners)
- Very likely to have facilities with combined H₂ and hydrocarbon fuels
- Hydrocarbon engine exhaust can contain catalyst poisons
 - e.g., <u>CO</u> or NO_x
 - A range of CO concentrations up to 1000 ppm was selected Grenier¹ reported that up to 500 ppm CO may be present in maintenance garages
- Such applications may also experience temperatures below 0 °C

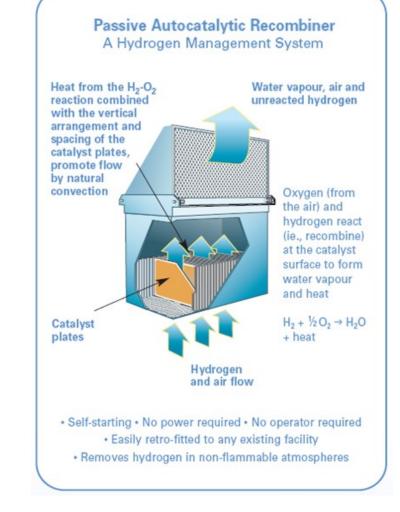
Hydrogen Recombiners

Self-Start Threshold

- Minimum H₂ concentration required to develop self-sustained convective flow through the PAR at a given temperature
- Largely dependant on catalyst activity/reaction kinetics

Recombination Rate

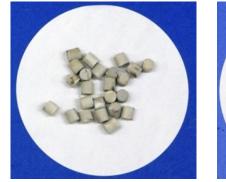

- Amount of H₂ that a PAR recombines per unit of time (i.e., kg/h)
- Largely dependant on fluid dynamics and convective flow

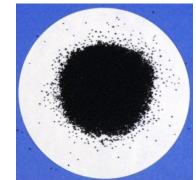

Catalyst Poisoning

 Platinum catalysts can adsorb CO molecules and hinder the catalytic reaction with H₂ by consuming active sites

Low Temperature

Lower temperatures reduce the reaction kinetics/rate by increasing the activation energy

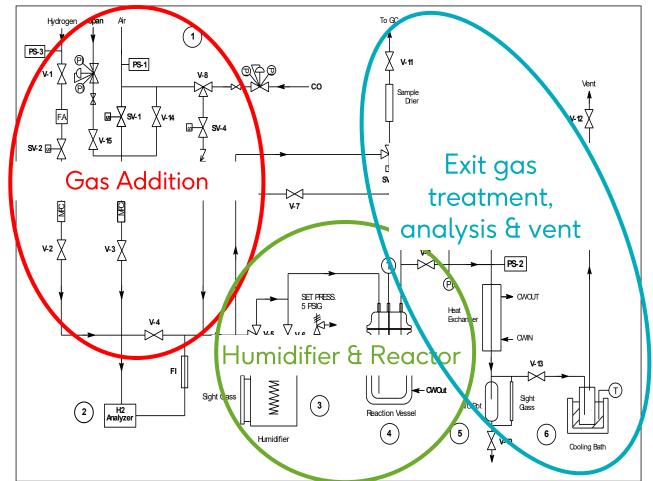




OFFICIAL USE ONLY / À USAGE EXCLUSIF

Catalyst Development

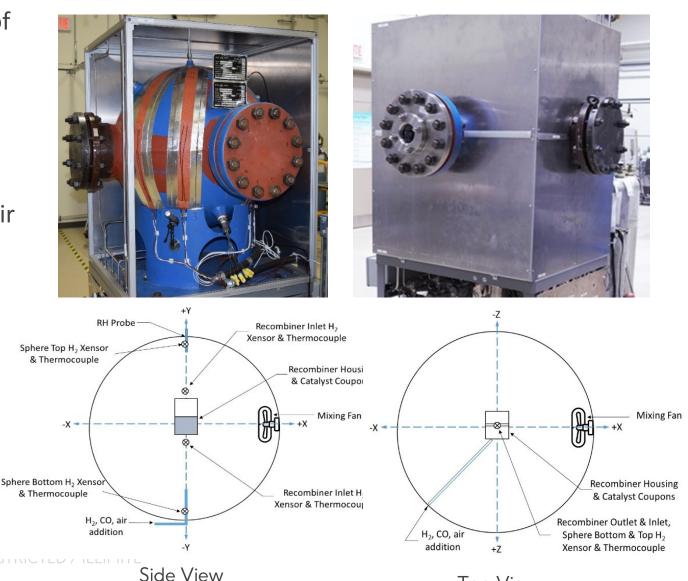
- Type 99-11 (used as baseline) is the standard Pt-based recombiner catalyst used in the PAR and GPR
- New catalyst formulations containing Pt + Ir as active metals and different catalyst preparation techniques were explored to improve the recombiner performance in combined H₂ and hydrocarbon applications
- All catalyst discussed have the same Pt loading as Type 99-11
- New catalyst formulations have varying Ir loadings:
 - CO-CAT01 = CO-CAT02 < CO-CAT03 < CO-CAT04
 - CO-CAT01 and CO-CAT02 were made using different catalyst preparation techniques



UNRESTRICTED / ILLIMITE

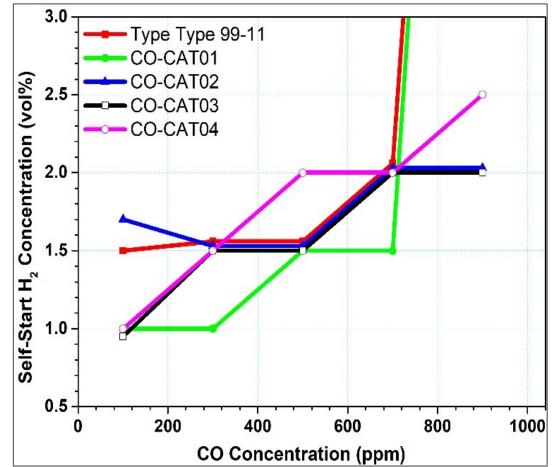
Facility and Experimental Set-Up: Catalyst Activity Bench Scale (CABS)

- CABS system developed for bench scale testing recombiner catalysts with potential poisons
- Used to assess the new catalyst formulations selfstart behavior with CO and at low temperature
- 6 L glass jacket vessel
- Flow-through system controlled at 3 L/min
- Various $\rm H_2$ and CO concentrations tested at 20 $^{\circ}\rm C$ and atmospheric pressure
- Tests performed with $\rm H_2$ and reactor temperatures -10 to 20 $^{\circ}\rm C$

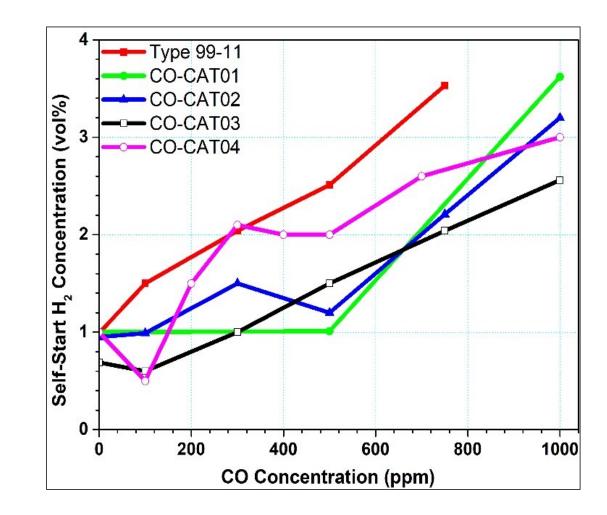


Top View

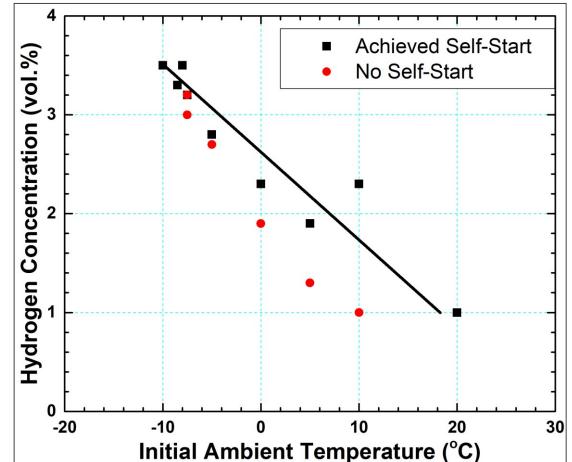
Facility and Experimental Set-Up: Hydrogen Safety Test Facility (HSTF)


- Self-start tests to investigate the CO tolerance of recombiner catalysts in a geometry that approximates a confined or semi-confined H₂ installation
- 30 inch ID, ~250 L
- 1.72 MPa and 100 $^\circ\text{C}$
- Systems for controlled addition of H₂, CO, and air
- Vacuum and vent systems
- Gas analysis: H₂ (multiple) and CO
- Mixing fan
- Static pressure measurement
- Temperature measurement (6 thermocouples)

Results – CO Tolerance: CABS


- Results from the experiments to investigate the minimum
 H₂ concentration to generate a self-start at a given CO concentration
- Similar to the HSTF tests, H₂ was added in stepped increments of 0.5 vol.% at each CO concentration tested
- CO-CAT01 responds the best, but fails to start at 900 ppm
 CO with less than 3 vol.% H₂
- As found in the HSTF test results, the catalyst formulations CO-CAT02 and CO-CAT03 performed the best over the full range of CO concentrations
- Based on the H₂ conversion data (not shown), the Pt-Ir catalyst formulations consistently demonstrated higher H₂ conversion in the presence of CO than Type 99-11

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens


Results – CO Tolerance: HSTF

- Results from the experiments to investigate the minimum H₂ concentration to generate a self-start at a given CO concentration
- H₂ was added in stepped increments of 0.5 vol.% at each CO concentration tested
- Newly developed Pt-Ir catalysts respond similarly to H₂ as the reference catalyst, but have greater CO tolerance
- Overall, catalyst formulations CO-CAT02 and CO-CAT03 performed the best over the full range of CO concentrations
- Recombination rate of the new Pt-Ir catalyst formulations was verified with the new catalyst formulations

Results – Low Temperature: CABS

- Low temperature (below room temperature) experiments to understand the self-start performance of H₂ recombiner catalysts
- Experimental conditions: atmospheric pressure and flow of 3 L/min
- Only Type 99-11 catalyst tested
- Self-start achieved at the lowest temperature tested (-10 °C)
- Results demonstrate that higher H₂ concentration is required at lower temperatures
 - Linear trend found

Conclusions

- The addition of Ir to the H₂ recombiner catalyst successfully increases the catalyst H₂ recombination activity in the presence of low CO concentrations (<1000 ppm)
- New Pt-Ir catalyst formulations CO-CAT02 and CO-CAT03 performed better than the others
- Results from the HSTF and CABS were consistent between each other
- Addition of Ir to the catalyst did not affect the recombination rate
- The standard AECL/CNL recombiner catalyst self-starts below the H₂ LFL at temperatures as low as -10 °C
- Next steps:
 - NO_x on the recombiner catalyst performance
 - Assess the economics of H₂ recombiners versus mechanical ventilation
 - Other recombiner catalyst formulations at low temperatures

Lee Gardner Research Scientist lee.gardner@cnl.ca

www.cnl.ca

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

OFFICIAL USE ONLY / À USAGE EXCLUSIF

H_2 + air mixture $H_2 + \frac{1}{2}O_2 \leftrightarrows H_2O + heat$ **Gas Phase** Recombiner $H_2 + \frac{1}{2}O_2 \leftrightarrows H_2O + heat$ Air + water vapour OFFICIAL USE ONLY / À USAGE EXCLUSIF

Hydrogen Recombiner Technologies

- Passive Autocatalytic Recombiner (PAR), Gas Phase Recombiner (GPR), Trickle-Bed Recombiner (TBR)
- Passive/convective or forced flow
- Most common form (PARs) utilized in nuclear reactor containment buildings ۲
- Technology has been used in battery rooms or for gas clean up systems, deoxo catalyst for electrolyser product purification
- Manufacturers of PARs: Canada, Germany, France, Korea, China, Japan (in development), Russia
- CNL developed wetproofed catalyst materials
 - Recombines H_2 at ppm level •
 - Different catalyst materials and catalyst forms available to suit • applications (spheres, rings, pellets, granules, screens, monoliths)