

Buoyant jet model to predict a vertical thermal stratification during refueling of gaseous hydrogen tanks in horizontal position with axial injection Gonin, R.^{1*}, Fabre, D.², Bourguet, R.², Ammouri, F.¹ and Vyazmina, E.¹

Institut de mécanique des fluides de Toulouse (IMFT), 2 allée Camille Soula, Toulouse, 31400, France 2. *remi.gonin@airliquide.com

Vertical thermal stratification

Homogeneous thermal field

Context

• Hydrogen for mobility

https://www.leaseplan.com/

Doc press Air Liquide

CLEAN MOBILITY ØRirLiquide

Context

• Description of a hydrogen tank

Context

• Tank filling mechanism

Recommendation from SAE J2601

Parameters	Limits
Gas temperatures	[-40°C(85°C]
Gas pressures	[5 bar, 875 bar]
Mass flowrate	60 g/s

Context

- Previous results on thermal gradients
 - Terada et al. (2008)
 - The criterion 5 m/s at the inlet velocity is suggested to detect thermal gradient onset for hydrogen tank

Terada, Toshihiro, Hiroshi Yoshimura, Yohsuke Tamura, Hiroyuki Mitsuishi, et Shogo Watanabe. « Thermal Behavior in Hydrogen Storage Tank for Fcv on Fast Filling (2nd Report) », 2008-01-0463, 2008. https://doi.org/10.4271/2008-01-0463.

Context

• Observation of vertical thermal gradients

HyTransfer conclusion: The smaller the inlet gas velocity; the larger the vertical thermal gradients. The criterion 5 m/s at the inlet velocity works for the 37 L tank.

7	September 2023	INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY 2023	REMI.GONIN@AIRLIQUIDE.COM

Context

• Two extreme scenarios with experimental results

D3Q8: Homogeneous case

• Tank capacity: 37 L

80

70

60

50

30

[°C]

- Injection diameter: 3 mm
- Average filling rate: 8 g/s
 injection pipe

D10Q2: Heterogeneous case

- Tank capacity: 37 L
- Injection diameter: 10 mm
- Average filling rate: 2 g/s
 No injection pipe

700 100 30,03°C 700 600 6.35°C 600 200 [par] Temperature [°C] 80 200 [par] 400 005 300 200 Pressure 400 e 60 300 essi 200 2 100 100 20 100 125 0 25 50 75 150 100 200 300 400 500 600 Time [s] 0 Time [s] Exp-ALAT: Probe Temperature - Exp-ALAT: T_{min} 0D-Sofil: Tay Exp-ALAT: pav ALAT = Air Liquide - Exp-ALAT: Tmax Exp-ALAT: Tay SAE limit: T85°C --- 0D-Sofil: pay Advanced Technology _

 Temperatures are gas temperatures

Round buoyant jet theory

Buoyant Jet model

Round buoyant jet theory

Buoyant Jet model

Buoyant Jet model

• Computational Fluid Dynamics visualisations

<u>CFD results issued from :</u> Gonin, R., Horgue, P., Guibert, R., Fabre, D., Bourguet, R., Ammouri, F. and Vyazmina, E., Advanced turbulence modeling improves thermal gradient prediction during compressed hydrogen tank filling, International Journal of Hydrogen Energy, 2023.

Buoyant Jet model

- Computational Fluid Dynamics visualisations
 - Jet oscillations

<u>CFD results issued from :</u> Gonin, R., Horgue, P., Guibert, R., Fabre, D., Bourguet, R., Ammouri, F. and Vyazmina, E., Advanced turbulence modeling improves thermal gradient prediction during compressed hydrogen tank filling, International Journal of Hydrogen Energy, 2023.

12	September 2023	INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY 2023	REMI.GONIN@AIRLIQUIDE.COM

Buoyant Jet model

- Computational Fluid Dynamics visualisations
 - Thermal gradient occurrence when jet hitting the lower part of the tank

<u>CFD results issued from :</u> Gonin, R., Horgue, P., Guibert, R., Fabre, D., Bourguet, R., Ammouri, F. and Vyazmina, E., Advanced turbulence modeling improves thermal gradient prediction during compressed hydrogen tank filling, International Journal of Hydrogen Energy, 2023.

13	September 2023	INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY 2023	REMI.GONIN@AIRLIQUIDE.COM

Air Liquide

14 September 2023

Buoyant Jet model

• Froude number

Equation system

Buoyant Jet model

• Froude number

Equation system

Froude number construction

$$Fr = \frac{u_0}{\sqrt{\frac{\rho_{ref} - \rho_0}{\rho_{ref}}g_{\overline{R_{tank}}}^{\widetilde{L}^2} \left(0.74 + 0.0223 \frac{\widetilde{L}}{r_0}\right)}}$$

Simplified equation system

Air Liquide

Buoyant Jet model

• Results

Type IV Inner volume 65L L/D = 2.08

Terada, Toshihiro, Hiroshi Yoshimura, Yohsuke Tamura, Hiroyuki Mitsuishi, et Shogo Watanabe. « Thermal Behavior in Hydrogen Storage Tank for Fcv on Fast Filling (2nd Report) », 2008-01-0463, 2008. https://doi.org/10.4271/2008-01-0463.

Buoyant Jet model Results

Diameter injection = 0.01 m Length injector = 0.0 m

100

60

20

[MPa] 80

sure

ø 40

σ

ature

Criterion: Fr=1 & Inlet gas velocity= 5 [m/s]

- Gas: Tay [* C]

- Gas: pay [MPa]

800

Time [s]

Calcul: (Inlet gas velocity [m\s]/5 [m\s])

*

1000

Criterion: Fr=1 & Inlet gas velocity= 5 [m/s]

1200

1400

18 September 2023

INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY 2023

----- Gas: T_{max} [* C]

→ Gas: *T_{av}* [* C]

REMI.GONIN@AIRLIQUIDE.COM

Buoyant Jet model

- Conclusions
 - ✓ For some filling conditions of horizontal tanks, experimental measurements showed thermal stratification can reach 30°C between the maximal gas temperature and the average gas temperature
 - Thermodynamic based model (0D model) can only predict the volume averaged gas temperature in the tank
 - In the literature, only Terada gave a minimal limit of 5 m/s for the gas velocity at the injection, to avoid thermal stratification in horizontal hydrogen tank with axial injection based on experimental study using a type IV 65 liter tank
 - Using a phenomenological approach, a buoyant jet model is used to suggest a Froude number limit of 1 considering the filling conditions and the tank geometry to predict thermal stratification
 - This Froude number minimal limit of 1 is consistent with the Terada criteria for small aspect ratio tanks. It gives better predictions for longer aspect ratio tanks.

REMI.GONIN@AIRLIQUIDE.COM