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Supernova Explosions
Poludnenko et al., 2019, Science

➢ Extend flame surface
➢ Compression
➢ Richtmyer-Meshkov (RM) 

Instability 
➢ The most important 

process before flame 
acceleration and DDT

Hypersonic airbreathing engine

Shock-Flame Interactions and Instability 

Power Plant Hydrogen Explosion
Muskingum, Ohio, 2007

Shock Flame interactions (SFI) 

Hydrogen Refueling Station 
Explosion Norway, 2019
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Motivation

Shock-flame interactions

➢ Single flame interacts with shock
Flame instability (Richtmyer-Meshkov instability)
Mechanism: Baroclinic torque
Inert RMI model: Impulsive Model, Zhang & Sohn, Meyer and Blewett,

Mikaelian…
Reactive RMI model [Yang & Radulescu, 2021, JFM]

➢Complicated shock-flame interactions
Shock interacts with multi flames  [Bakalis 2021]
Shock interacts with bubble flame  [Haehn 2023, CNF] [Diegelmann 2021, CNF]

[Thomas 2007 CTM]
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Motivation

Shock-flame interactions

➢Reflected shock, flame and boundary later interactions
Shock bifurcation,  lambda shock and promotes DDT 
[Gamezo 2001 CNF] [Gamezo 2005 PCI] [Yhuel 2023 PCI]

What if shock-flame interactions occur with the existence of wall friction?
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Methodology
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➢ Initially perturbated flame 

➢ Shock wave
(Rankine-Hugoniot relations)
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Unburned region
Burned region
Flame front

Computational domain

Physical Model

Yang & Radulescu, 2021, JFM
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Methodology 

➢Governing Equations
Reactive, Navier-Stokes Equation
Ideal Gas Model
Chemical-Diffusive Model

➢Numerical Method
5th WENO Scheme, HLLC fluxes
3rd Runge-Kutta
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Methodology 

ሶ𝝎 =
d𝑌

d𝑡
= 𝐴𝜌𝑌exp(−𝐸𝑎/𝑅𝑇)

Input parameters

𝑨 Exponential factor

𝑬𝒂 Activation Energy

𝒒 Heat release

…

Output properties

𝜹𝑳

𝑺𝒍

𝑻𝒃
…

Laminar flame thickness

Burning velocity

Adiabatic temperature

CDM
+

Navier Stokes
+

Equation 
of state

Reproduce

Arrhenius equation :

Experiments or 

Chemical Mechanism 

(Burke)

Genetic Algorithm

[1] BURKE M P, CHAOS M, JU Y, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion [J]. Int J Chem Kinet, 2012, 44(7): 444-74.
[2] KAPLAN C R, Ö ZGEN A, ORAN E S. Chemical-diffusive models for flame acceleration and transition-to-detonation: genetic algorithm and optimisation
procedure [J]. Combustion Theory and Modelling, 2019, 23(1): 67-86.

Y unburned mass fraction



8

One-dimensional steady flame

 1.1648 Specific heat ratio

M 24.2 Molecular weight

A 1.332  108 m3/kg-s Pre-exponential factor

Ea 33.24 RT0 Activation energy

q 48.70 RT0/M Heat release

0 3.648  10-6 kg/s-m-K0.7 Transport constants

➢Output properties

Laminar burning velocity        1.98 m/s
Adiabatic flame temperature 2320 K
Laminar flame thickness         0.375 cm

➢Mixture: φ = 1 H2-Air, 17.24 kPa, 293K
➢ Input parameters

Methodology

➢Pr = 0.1, Le = 1

[Burke, Int J Chem Kinet, 2012]
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Shock-Flame Interaction and Flame Evolution

➢2D
➢ Long Neck

Free-slip case t* = -0.020

t* = 0.233 

t* = 0.816 

t* = 1.094

t* = 1. 905

t* = 4.056
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➢3D
➢Wall friction 

breaks the 2D
➢ Flame stretch

No-slip case

Shock-Flame Interaction and Flame Evolution

t* = -0.020

t* = 0.246 

t* = 0.828 

t* = 1. 101

t* = 1. 906

t* = 4.062
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Flame Instability

Flame instabilities as a function time 

➢Good agreement with experiment 
[Yang & Radulescu, 2021,JFM] 

➢Two stages

S1, Shock compression

S2, Perturbation growth stages

➢Wall friction promotes flame 
instability

Inert RMI model
Meyer & Blewett (MB) Model

S1

S2
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Flame stretch during SFI

Free-slip case

Peak stretch rate appears  at the intersection of shock and flame
No obvious stretch after shock passage

Flame stretch rate 
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Flame Stretch during SFI

No-slip case

Heavy, and continuous stretch near the wall (105)
Thin boundary layer
Larger flame surface area

Flame stretch rate 
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Vortex Dynamics

➢ Less vorticity near the

wall

➢ Damping of local flame

perturbation near the

wall

➢ Non-uniform

perturbation evolution
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Vortex Dynamics

T1 Vortex stretching 
T2 Viscous torque
T3 Viscous dissipation
T4 Dilation
T5 Baroclinic torque
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Conclusions

➢ Flame perturbation during shock-flame interaction can be divided into two

stages, shock compression and perturbation growth stages.

➢Wall friction has a significant influence on the shock-flame interaction and

flame perturbation growth. Two effects of wall friction on flame-shock

interaction:

flame stretching

damping of local flame perturbation near the no-slip wall

➢ The wall friction promotes entire flame instability after SFI rather than

weakening.
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Thank you for listening!

Q&A


