

on Hydrogen Safety

Ouébec

Effect of wall friction on shock-flame interactions in a hydrogen-air mixture

Ting Shen, Huahua Xiao*

State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China

Concordia University, Montreal, Quebec, Canada

2023/10/31

ssharon@mail.ustc.edu.cn International Conference xiaoh@ustc.edu.cn

Shock-Flame Interactions and Instability

Shock Flame interactions (SFI)

- Extend flame surface
- Compression
- Richtmyer-Meshkov (RM) Instability
- The most important process before flame acceleration and DDT

Hypersonic airbreathing engine

Power Plant Hydrogen Explosion Muskingum, Ohio, 2007

Supernova Explosions Poludnenko et al., 2019, Science

Hydrogen Refueling Station Explosion Norway, 2019

Motivation

Shock-flame interactions

Single flame interacts with shock
Flame instability (Richtmyer-Meshkov instability)
Unburned
Mechanism: Baroclinic torque
Inert RMI model: Impulsive Model, Zhang & Sohn, Mever ar

 $\frac{\nabla p}{\text{Unburned}} \bigvee \nabla \rho$

Inert RMI model: Impulsive Model, Zhang & Sohn, Meyer and Blewett, Mikaelian...

Reactive RMI model [Yang & Radulescu, 2021, JFM]

Complicated shock-flame interactions Shock interacts with multi flames [Bakalis 2021] Shock interacts with bubble flame [Haehn 2023, CNF] [Diegelmann 2021, CNF] [Thomas 2007 CTM]

Motivation

Shock-flame interactions

Reflected shock, flame and boundary later interactions Shock bifurcation, lambda shock and promotes DDT [Gamezo 2001 CNF] [Gamezo 2005 PCI] [Yhuel 2023 PCI]

What if shock-flame interactions occur with the existence of wall friction?

Physical Model

.....

- Governing Equations Reactive, Navier-Stokes Equation Ideal Gas Model Chemical-Diffusive Model
- Numerical Method 5th WENO Scheme, HLLC fluxes 3rd Runge-Kutta

 $\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_i}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i}$ $\frac{\partial}{\partial t}(\rho Y) + \frac{\partial}{\partial x_i}(\rho Y u_i) = \frac{\partial}{\partial t}(\rho D \frac{\partial Y}{\partial x_i}) + \rho \dot{\omega}$ $\frac{\partial(\rho E)}{\partial t} + \frac{\partial(\rho u_j E + \rho u_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K \frac{\partial T}{\partial x_j} \right) + \frac{\partial(\tau_{ij} u_i)}{\partial x_j} - \rho q \dot{\omega}$ $p = \rho RT / M$ $E = \frac{p}{\rho(\gamma - 1)} + \frac{1}{2}u_i^2$ $v = \frac{v_0 T^{0.7}}{\rho}, \ D = \frac{D_0 T^{0.7}}{\rho}, \ \alpha = \frac{K}{\rho C_p} = \frac{\kappa_0 T^{0.7}}{\rho}$

BURKE M P, CHAOS M, JU Y, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion [J]. Int J Chem Kinet, 2012, 44(7): 444-74.
 KAPLAN C R, ÖZGEN A, ORAN E S. Chemical-diffusive models for flame acceleration and transition-to-detonation: genetic algorithm and optimisation procedure [J]. Combustion Theory and Modelling, 2019, 23(1): 67-86.

> Mixture: $\varphi = 1 H_2$ -Air, 17.24 kPa, 293K > Input parameters

γ	1.1648	Specific heat ratio
М	24.2	Molecular weight
A	$1.332 \times 10^8 \text{ m}^3/\text{kg-s}$	Pre-exponential factor
E _a	33.24 <i>RT</i> ₀	Activation energy
q	48.70 <i>RT₀/M</i>	Heat release
K ₀	$3.648 \times 10^{-6} \text{ kg/s-m-K}^{0.7}$	Transport constants

Output properties

Laminar burning velocity1.98 m/sAdiabatic flame temperature2320 KLaminar flame thickness0.375 cm

➢ Pr = 0.1, Le = 1

[Burke, Int J Chem Kinet, 2012]

One-dimensional steady flame

Shock-Flame Interaction and Flame Evolution

Free-slip case

Shock-Flame Interaction and Flame Evolution

No-slip case

Flame Instability

Inert RMI model Meyer & Blewett (MB) Model

- Good agreement with experiment [Yang & Radulescu, 2021, JFM]
- Two stages
 - S₁, Shock compression
 - S₂, Perturbation growth stages
- Wall friction promotes flame instability

Flame instabilities as a function time

Flame stretch during SFI

Free-slip case

Flame stretch rate

Peak stretch rate appears at the intersection of shock and flame No obvious stretch after shock passage

Flame Stretch during SFI

No-slip case

Heavy, and continuous stretch near the wall (10⁵) Thin boundary layer Larger flame surface area

Vortex Dynamics

- Less vorticity near the wall
- Damping of local flame perturbation near the wall
- Non-uniform perturbation evolution

Vortex Dynamics

15

Conclusions

- Flame perturbation during shock-flame interaction can be divided into two stages, shock compression and perturbation growth stages.
- ➢ Wall friction has a significant influence on the shock-flame interaction and flame perturbation growth. Two effects of wall friction on flame-shock interaction:

flame stretching

damping of local flame perturbation near the no-slip wall

The wall friction promotes entire flame instability after SFI rather than weakening.

Acknowledgment

National Key Research and Development Program of China (Grant No. 2021YFB4000902) Fundamental Research Funds for the Central Universities (Grant No. WK2320000055) DNL Cooperation Fund China Scholarship Council

Thank you for listening!

