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PRESENTATION PLAN



• Hydrogen as future carbonless energy carriermass scale use expected increase of 
unintended events of hydrogen release

• Hydrogen physical properties considered as advantages and disadvantages

• Detonation prevention (release ignition FA + TD) and support (RDE/PDE)

• Detonation is one of the most challenging combustion phenomenon by means of 
experimental equipment as well as numerical tools

• CFD  wide range of modelled scale codes optimisation necessary for particular
combustion regimes (e.g. sub-grid scale models, pre-calculated IDT data)

• Validated numerical codes should simulate more precise combustion processes new
tools to support R&D, risk assesment in process safety safer and more efficient
devices and processes

1. INTRODUCTION
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• Investigate numerically the detonation initiation process through shock reflection 
and focusing, to gather essential data on the TD process for different H2 - air 
mixtures at initial pressure of 1 bara.

• Conduct numerical simulations using the ddtFoam code to replicate experimental 
conditions as described in paper: Rudy, W., Transition to detonation in hydrogen-air 
mixtures due to shock wave focusing in the 90-deg corner, IJHE, 2023
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2. OBJECTIVES
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3. EXPERIMENTAL SETUP AND DATA
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• ToA method for flame and shock wave velocity calculations
• Velocity of the shock wave at the reflection extrapolated
• Pressure in the corner obtained from max. PS5 value.
• Calculation of ignition delay time (IDT) in wedge tip

3. EXPERIMENTAL SETUP AND DATA
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3. EXPERIMENTAL SETUP AND DATA
3 ignition types recorded: deflagration, detonation and delayed detonation



• Utilized ddtFoam solver from OpenFOAM® developed by Ettner et al. (Ettner, F. A., Vollmer, K. G., Sattelmayer, T., 
Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures, Journal of 
Combustion, 2014)

• Based on unsteady, compressible Navier-Stokes Equations in Favre-Average sense

• Density-based solver, employs the HLLC scheme to determine all the convective fluxes.

• Turbulence modelled by k- ω- SST model

• Two source terms for ignition: deflagrative (Weller gradient combustion model) and detonative (autoignition)

• Autoignition model utilizes a pre-calculated ignition delay time (IDT) table based on  O'Conaire's reaction 
mechanism (Cantera generated)

• Sub-grid scale modeling of shock wave to capture post-shock parameters applicable for coarse grids ≤ 0.5 mm

• Thermo and transport data properties for hydrogen-air mixture obtained from the Chemkin database.

• ddtFOAM validated against variety of cases:

- Ettner et al., Journal of Combustion, 2014  - semiconfined detonative layer

- Rudy et al., Energies, 2019 – tube filled with obstacles

- Hasslberger et al., J. Loss. Prev. Proc. Ind., 2015  - RUT facility, simulations with AMR
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4. SIMULATION DESCRIPTION



• Computational Domain: the final segment of a 0.11x0.11x2 m tube with a 90° wedge-
shaped cavity filled with a hydrogen-air mixture with concentrations from 15% to 50% 
(equivalence ratio: 0.42 to 2.91)

• Shock tube problem:  P1, T1: 8-15 bar 298 K, P0, T0: 1 bar, 298 K
• VS = 650-800 m/s,
• Numerical sensors placed in positions as in experiments
• Hexahedra+prism mesh: 0.5x0.5 mm  0.05x0.05 mm in the wedge area ~70 k cells
• BCs: Walls assumed to be non-slip and adiabatic
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4. SIMULATION DESCRIPTION CONT.



• Numerical results processed as in experiments:
- velocity profiles extracted from pressure sensors using the Time of Arrival

method
- maximum pressure from PS5

• Three ignition modes were observed, similar to the experiments:
– Deflagrative ignition
– Delayed detonation ignition
– Transition to detonation
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5. RESULTS



Deflagrative ignition mode for 20% H2+air mixture and VS = 643.7 m/s.
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5. RESULTS



Delayed detonation mode for 35% H2+air mixture and VS = 698.65 m/s.
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5. RESULTS



Detonative mode for 35% H2+air mixture and VS = 714.88 m/s
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5. RESULTS

Detonation wave propagation velocity of 
2225 m/s (VCJ =2067m/s)
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• The deviation from experiments is mainly due to the difference in IDT for direct
transition to detonation limit for SIM is of 10 μs whether limit for EXP is of 1 μs

• Simulations show stronger dependance of IDT = f(VS) than in experiments

/0 /2020 9 23 th ICHS, . .- .0 .2010 19 09 21 9 23

5. RESULTS
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• Numerical results follow the experimental U-shape pattern with the lowest deviation for near
stoichiometric mixtures (~5%)

• In geenral difference between numerical and experimental data stayed within range 5-8% below the 
exp. data for mixtures 25% - 45% H2

• The highest deviation from experimental data was within range 14 - 17% for 25% and 50% H2, 
respectively
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5. RESULTS



• Pressure for direct 
detonation initiation 
ranges from 5-10 MPa for 
25%-50% H2 in air. 

exp. Sensor averaging?

• Numerical limits deviated 
by 10-36%, largest 
differences in 30-40% 
hydrogen mixtures.
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5. RESULTS



• The study was aimed to replicate experiments and assess ddtFoam code ability to
predict TD limits due to shock focusing in a 90-deg wedge

• Numerical results revealed three ignition scenarios - deflagrative ignition,
deflagrative ignition with delayed transition, and immediate transition to
detonation.

• A notable deviations exist between numerical and experimental data by means of
limiting velocities, IDT and maximum overpressures.

• In general the difference in limiting shock wave velocities ranged 5-8%, with the
largest discrepancies observed for mixtures < 25% and > 45% hydrogen in air, up to
17%.

• IDT overestimated in simulations underestimation of limiting shock velocities

• Numerical underestimation provides some safety margin within acceptable level

6. CONCLUSIONS
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• Conduct simulations of leaner (H2 < 25%) and richer (H2 > 45%) hydrogen-air mixtures

• Perform 3D simulations of 3-wall 90-deg corner reflector exp. research in progress

• Extend the research to HC-air and CH4-H2-air mixtures

• Test different chemical reaction mechanisms for IDT table?
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7. FURTHER RESEARCH
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