NUMERICAL SIMULATION OF TRANSITION TO DETONATION IN A H₂-AIR MIXTURE DUE TO SHOCK WAVE FOCUSING IN A **90**-DEG WEDGE (ID 249)

Jose Bermudez De La Hoz, <u>Wojciech Rudy</u>^{*}, Shamma Khair Allah, Andrzej Teodorczyk

Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering Warsaw University of Technology, Warsaw, Poland

* E-mail: wojciech.rudy@pw.edu.pl

Warsaw University of Technology

10th ICHS, 19.09.-21.09.2023 Québec, Canada

PRESENTATION PLAN

- **1. Introduction**
- 2. Objectives
- 3. Experimental setup and data
- 4. Simulation description
- 5. Results
- 6. Conclusions
- 7. Further research
- 8. Acknowledgements

1. INTRODUCTION

- Hydrogen as future carbonless energy carrier → mass scale use → expected increase of unintended events of hydrogen release
- Hydrogen physical properties considered as advantages and disadvantages
- Detonation prevention (release \rightarrow ignition \rightarrow FA + TD) and support (RDE/PDE)
- Detonation is one of the most challenging combustion phenomenon by means of experimental equipment as well as numerical tools
- CFD → wide range of modelled scale → codes optimisation necessary for particular combustion regimes (e.g. sub-grid scale models, pre-calculated IDT data)
- Validated numerical codes should simulate more precise combustion processes → new tools to support R&D, risk assessment in process safety → safer and more efficient devices and processes

2. OBJECTIVES

- Investigate numerically the detonation initiation process through shock reflection and focusing, to gather essential data on the TD process for different H₂ - air mixtures at initial pressure of 1 bara.
- Conduct numerical simulations using the ddtFoam code to replicate experimental conditions as described in paper: *Rudy, W., Transition to detonation in hydrogen-air mixtures due to shock wave focusing in the 90-deg corner, IJHE, 2023*

3. EXPERIMENTAL SETUP AND DATA

3. EXPERIMENTAL SETUP AND DATA

- ToA method for flame and shock wave velocity calculations
- Velocity of the shock wave at the reflection extrapolated
- Pressure in the corner obtained from max. PS5 value.
- Calculation of ignition delay time (IDT) in wedge tip

3. EXPERIMENTAL SETUP AND DATA

3 ignition types recorded: deflagration, detonation and delayed detonation

20/09/2023

4. SIMULATION DESCRIPTION

- Utilized ddtFoam solver from OpenFOAM[®] developed by Ettner et al. (*Ettner, F. A., Vollmer, K. G., Sattelmayer, T.,* Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures, Journal of Combustion, 2014)
- Based on unsteady, compressible Navier-Stokes Equations in Favre-Average sense
- Density-based solver, employs the HLLC scheme to determine all the convective fluxes.
- Turbulence modelled by k- ω SST model
- Two source terms for ignition: deflagrative (Weller gradient combustion model) and detonative (autoignition)
- Autoignition model utilizes a pre-calculated ignition delay time (IDT) table based on O'Conaire's reaction mechanism (Cantera generated)
- Sub-grid scale modeling of shock wave to capture post-shock parameters \rightarrow applicable for coarse grids \leq 0.5 mm
- Thermo and transport data properties for hydrogen-air mixture obtained from the Chemkin database.
- ddtFOAM validated against variety of cases:
 - Ettner et al., Journal of Combustion, 2014 semiconfined detonative layer
 - Rudy et al., Energies, 2019 tube filled with obstacles
 - Hasslberger et al., J. Loss. Prev. Proc. Ind., 2015 RUT facility, simulations with AMR

4. SIMULATION DESCRIPTION CONT.

- Computational Domain: the final segment of a 0.11x0.11x2 m tube with a 90° wedgeshaped cavity filled with a hydrogen-air mixture with concentrations from 15% to 50% (equivalence ratio: 0.42 to 2.91)
- Shock tube problem: P₁, T₁: 8-15 bar 298 K, P₀, T₀: 1 bar, 298 K
- V_s = 650-800 m/s,
- Numerical sensors placed in positions as in experiments
- Hexahedra+prism mesh: 0.5x0.5 mm \rightarrow 0.05x0.05 mm in the wedge area ~70 k cells
- BCs: Walls assumed to be non-slip and adiabatic

- Numerical results processed as in experiments:
 - velocity profiles extracted from pressure sensors using the Time of Arrival method
 - maximum pressure from PS5
- Three ignition modes were observed, similar to the experiments:
 - Deflagrative ignition
 - Delayed detonation ignition
 - Transition to detonation

Deflagrative ignition mode for 20% H2+air mixture and $V_s = 643.7$ m/s.

20/09/2023

Delayed detonation mode for 35% H_2 +air mixture and V_s = 698.65 m/s.

Detonative mode for 35% H_2 +air mixture and V_s = 714.88 m/s

Detonation wave propagation velocity of 2225 m/s (V_{CJ} =2067m/s)

- The deviation from experiments is mainly due to the difference in IDT for direct transition to detonation \rightarrow limit for SIM is of 10 µs whether limit for EXP is of 1 µs
- Simulations show stronger dependance of $IDT = f(V_s)$ than in experiments

- Numerical results follow the experimental U-shape pattern with the lowest deviation for near stoichiometric mixtures (~5%)
- In geenral difference between numerical and experimental data stayed within range 5-8% below the exp. data for mixtures 25% - 45% H₂
- The highest deviation from experimental data was within range 14 17% for 25% and 50% H₂, respectively

 Pressure for direct detonation initiation ranges from 5-10 MPa for 25%-50% H₂ in air.

 \rightarrow exp. Sensor averaging?

 Numerical limits deviated by 10-36%, largest differences in 30-40% hydrogen mixtures.

6. CONCLUSIONS

- The study was aimed to replicate experiments and assess ddtFoam code ability to predict TD limits due to shock focusing in a 90-deg wedge
- Numerical results revealed three ignition scenarios deflagrative ignition, deflagrative ignition with delayed transition, and immediate transition to detonation.
- A notable deviations exist between numerical and experimental data by means of limiting velocities, IDT and maximum overpressures.
- In general the difference in limiting shock wave velocities ranged 5-8%, with the largest discrepancies observed for mixtures < 25% and > 45% hydrogen in air, up to 17%.
- IDT overestimated in simulations \rightarrow underestimation of limiting shock velocities
- Numerical underestimation provides some safety margin within acceptable level

7. FURTHER RESEARCH

- Conduct simulations of leaner ($H_2 < 25\%$) and richer ($H_2 > 45\%$) hydrogen-air mixtures
- Perform 3D simulations of 3-wall 90-deg corner reflector \rightarrow exp. research in progress
- Extend the research to HC-air and CH₄-H₂-air mixtures
- Test different chemical reaction mechanisms for IDT table?

Acknowlegements

I acknowledge the Dean of the Faculty of Power and Aeronautical Engineering for financial support, grant 504/04652/1131/44.000000

Warsaw University of Technology

NUMERICAL SIMULATION OF TRANSITION TO DETONATION IN A H₂-AIR MIXTURE DUE TO SHOCK WAVE FOCUSING IN A 90-DEG WEDGE

Jose Bermudez De La Hoz, **Wojciech Rudy**^{*}, Shamma Khair Allah, Andrzej Teodorczyk

Thank you for your attention!

Institute of Heat Engineering, Warsaw University of Technology, Warsaw, Poland

* E-mail: wojciech.rudy@pw.edu.pl

PIS

Warsaw University of Technology

10th ICHS, 19.09.-21.09.2023 Québec, Canada