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[EA Hydrogen TCP Task 43 Objectives {%’

sYRrA

Task 43 “Safety and RCS of Large-Scale Hydrogen Energy Applications”
(4th H2 safety task since Task 19 in 2004)

Specific Objectives & Framing
*Focus on large-scale compressed and liquid hydrogen energy systems and applications
*Focus on common horizontal safety & regulatory attributes of emerging large-scale hydrogen
energy systems and applications
*Focus on developing uniform methodologies via case studies, available PNR and their results’
synthesis and analysis
*Focus on practical recommendations and solutions for industry, standardization, and regulatory bodies:
* Inform relevant international and national RCS development activities
« Help H2 industry with market deployment and establishment of best practices
*Focus on the development of joint products such as peer-reviewed publications, educational and
training materials, conference papers, white papers, reports, new work item proposals for

standard development’ etc. Mobility Infrastructure P2H with RES Residential Sector
Heavy -
duty road Mult_lfuel Rail | Maritime | Aviation | Electrolysis Energy Cooking | Heating
vehicles stations Storage

Common horizontal topics:

Social {comprehensive) risk
Safety culture and management system
Safety distances
Hazardous areas
Confined environment: Enclosures, buildings, structures

Hydrogen system safety
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72
IEA Task 43 Structure ;’ﬁ:ﬁ

E&A
= Task 43 Safety and RCS of Large A
Scale Hydrogen Energy Applications ’ Eiclation Facor it | !
= Task Manager: Dr. Andrei V. Tchouvelev, Protective Barriers Mitigative Barriers ’
Hydrogen Council Cause | | . Conseclquence

=  Subtask A: Social (Comprehensive) Risk;

g D
. . . . 'E Cause 2 |
= Prof. Tadahiro Shibutani, Yokohama National | < \D\ Hazscdens Bvent C
. . = ! o é Ly onsequence
University (Japan) 3 Cause3 |[—IHEHE = mnitiator | BRHEBH ;
=  Subtask B: Safety Culture and Management g : |:[/D/ DU\D\
SyStem; &= Causen [ ., Consequence

= Nick Barilo, Centre for Hydrogen Safety /
Nicolas Mey, Bureau Veritas (US, France)

=  Subtask C: Safety Distance Methodologies

= Subtask Leaders: Guy de Reals, Air Liquide /
Richard Chang, Shell (France, UK)

=  Subtask D: Hazardous Areas Methodologies

= Subtask Leader: Dr. Stuart Hawksworth, Health
& Safety Executive (UK)

=  Subtask E: Hydrogen System Safety

=  Subtask Leaders: Prof. Katrina Groth,
University of Maryland (USA)

= Subtask F: Dissemination

= Subtask Leader: Dr. Andrei V. Tchouvelev,
Hydrogen Council (Canada)
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Subtask E participants -3

Participating organizations were identified at the first Task 43 meeting in Buxtons¥YRRA
UK 1n October 2022 and the second meeting in Golden, Colorado, USA in March
2023.

* The following organizations have engaged with Subtask E:

= Arup; = Lund University;
= Air Liquide; = National Renewable Energy
= Airbus Operations Limited; Laboratory (NREL);
= (Canadian Nuclear Labs; = Norwegian University of Science and
= DGC a/s: Technology (NTNU);
=  DTU Construct; " Shell;
= Engie: = University of Bergen (UiB);
= HSE: ’ =  University of Maryland (UMD)
’ : Center for Risk and Reliability;
= Hydrogen Council; , ,
. ITMP . = University of South-Eastern Norway
= Lifte H2 Gm.bH; = University of Stavanger (UiS);
" Lloyd’s Register; = Ulster University, HySAFER Centre;

\ Join us — contact kgroth@umd.edu I_
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Subtask E Scope 1s Hydrogen Systems Safety PR
— from causes through consequences W

sSYrRrRA
= (Objective: Provide a forum for Subtask E
exchange of scientific information H2 System Safety
regarding hydrogen system safety. The
task addresses technical gaps pertaining - " 2 » dlEiA =
to the safety, risk and reliability analysis | " coan rrttHthRA glgldt?& CERes

of hydrogen systems.
F

= Emphasis on mechanical equipment, in
confined environments (enclosures). Industry guidance

= June 1, 2022 — May 31, 2025

I e, |
i Escalation Factors: i : Escalation Factors: i
Preventive and | i Recovery Factors; .
i Protective Barriers | ! Mitigative Barriers !
o Cause 1 C’ D | | Consequence
g D 5 : 1
-E Cause 2 I
E { [Hazardous Event| 1 | | Consequence
2 Cause 3 / Initiator 2
@
s
) Causen [; . : 2| Consequence
— E _____ i o : 3 T
S
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Basis for subtask structure: Gap study on risk &

reliability analysis for H2 storage & delivery (IJHE, W
May, 2019) o sYAen

1. Current reliability and safety data i !
1s [still] inadequate & 1naccessible e

Hydrogen storage and delivery: Review of the state m)
of the art technologies and risk and reliability

2. Current reliability, QRA, and safety o
modeling paradigms (i.e., HyRAM) e
need to be matured

iiiiiii

3. H2 safety community needs to
modernize their approach to
QRA: embracing data, PHM,
dynamic QRA.

4. Need for more QRA case studies

(for H2 Storage & dellvery and Moradi, Ramin, and Katrina M. Groth, May 2019. “Hydrogen

b evon d) Storage and Delivery: Review of the State of the Art
y Technologies and Risk and Reliability Analysis.” International

Journal of Hydrogen Energy, 44(23): 12254-69.
https://doi.org/10.1016/.ijhydene.2019.03.041
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Subtask Structure

sYRrA

Subtask E
Hydrogen System Safety
J El J E2 J E3 i E4
Reliability data || Improvements Advanced Hydrogen
collection & to current H, || QRA methods system case
curation QRA tools & prognostics studies
~N— F

Industry guidance

Regulations, codes, and standards support
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Subtask E Active R&D Identified as of 2%
March 2023 ;’:?m

= E1 Reliability data collection framework for hydrogen systems

= UMD & NREL Developing HyCReD (Hydrogen Component Reliability
Database) framework and corresponding probabilities — starting with fueling
stations

= Now published: see next slide
= Lund University — Component leak data collection @ hydrogen stations in EU.

= Hydrogen Council and CHS — Both setting up internal task teams to explore
failure or leak database development.

= Vysus and partners. - Developing leak frequencies and ignition probabilities
under SAFEN project

= Engie with many partners; MultHY Fuel project, includes modeling sizes of
hydrogen leaks from dispenser components

= NREL, USN — Separate projects on experimental leak rate quantification and
sensors and algorithms for leak detection

¥ @ A.JAMES CLARK
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Approach: Research defining a QRA- :g«.
usable HyCReD

SYRRH
| | |
Phase 2018-2021 2021-2022 2022-2025 N Z5=2)24 2024-2041
. Review  Develop H2- « Database * Partner with %’artner with
existing H2 specific system structure NREL & industry sources
o o e L. stakeholders to to populate
Activities data sources decompositions validation, pop
atabase
& P feedback, and ;ffi quiitabase datab
* Identify best « Develop H2 refinement
Objectlves pr ac.'ticesfr om component * Develop a data
‘S:lmllar . failure modes quantification
industries plan
* Moradi & Groth * West (2021) * Hartmann et * Al-Douri et al. Potential
(2019) JHE M.S. thesis al. (2022) CHS (ICHS~2023) (2026) on
Outputs ) Americas Conf. database
Completed & * Correa-Jullian * Al-Douri et al. * Hartmann et expansion &
expected journal ISJLHGEroth (2022) (2022) AIChE * Groth et al. al. ICHS quantification
& conference Spring Meeting (JHE 2023). 2023)
publications

* West et al.
(2022) ITHE

qgm%

© A.JAMES CLARK
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NATIONAL RENEWABLE ENERGY LABORATORY

All papers are available from research team upon request




Hydrogen Component Reliability Databasesss
(HYCRQD) SYRRA

Evaluated existing H2 Developed system-specific H2 Developing & validating HyCReD
safety data collection tools fueling station decomposition structure

CHS
Failure
Rate
Data Type Data
Initiating event (description g 7

.
e Static data field
atic data 11eias
Event Station/Facility | Facility Type Service/Usage | Nominal Working | H2 phases
Number Identification Pressure on site

Location within system

Commercial public ~ Heavy-duty 700 bar
Failure mode
Failure mechanism 2 B Rescarcl limited-  Both heavy-and 350 bar Gas
s light-duty
Failure root cause access &
Event and failure :

oo | Release size
Incident severity Event Equipment | Subsystem | Functional | Component mponent | Component | P&ID Part
Consequences Number Description Group Nominal Population | Number

Working

H2 accumulation Eressare
H2 defection 25 Bulk storage  Confainment  Type Illtank  250-300 bar TK-103
Componentlife Compression  Compression  Compressor  400-680 bar 2 CO-E-49A
Operations process

Life/usage
Maintenance

Site inventory
Public access to data

Scope includes any H2 incident
Data scope Regular reporting

* Failure event data fields

Event Time & Failure Failure Failure Failure Root | Hydrogen | Release Size | Ignition
Number | Date of Mode erity | Mechanism | Cause Release | (Small/ (Yes/No)
Failure Description | (Yes/No) | Medium/La

rge)
No

D eﬁll e d as et Of 2 3 Deﬁned 33 Hz_speciﬁc 25 o Db Gl Lo Nt

Anonymous data presentation
Data quality checks

Pmu:::
Q dium
i mponent failure mod "
requirements for HyCReD component failure modes SR FrT P e [ T
1533 deviation
Failure Mode Definition
“Konomnl output-bigh bove nommal ol e
Fail Mai ‘bnemm o\l::u:—l;\" 3_:10“ Doteagalfulre
Characteristics Static data ar 1:;:‘:Vem e:';::f :11::1: € taminat o T it
it e o lack of calibrat 0
; : o * Maintenance event data fields
* Design for * Component * Narrative event * Type of el ek wility et Uiy methun Teak stem o the envrommment
usability location description maintenance Lrpt g o o of otsiomen, byirogen bt i
. 5 . . mal rupture ility medu Completc loss of uility medium fo the environment
. Pllb_{l%{’ . Opeé_att_mg « Failure mode 0 M:n_lmenanfce q ail closed omponet ot ok o he cosdssiton Date & Time Date & Time Date & Time Action Maintenance
« Failur ? il open omponent stops working in e N ) 9 o
aRveaglt?lare E‘O;ni)ifnuem life ﬁfellc‘llllaenism ?:C;ovnelfp:;me ailto close e L o — Repair Started | Repair Station Restarted | Performed Description
. * C . [ [ C to disconnect does not do so on deman
reporting « Number of like * Root cause m"eﬂ ail to operate e mm'.’,“"l e Comrg e
+ Anonymity components « Release location * Manhours alto siop C
- Quality & size = — T sl 081 0729021 Replacement
(e * Hydrogen s e T o
« Regular updating accumulation o] n-»:"wh:ﬂ:r:;w-ed el
* Process * Detection T leckial A t R h S Ig d t d
documentation « Isolation ’::‘\‘:ﬁ:’(:"‘ :::::::: C lve esearc ee lng a a prOVI ers
+ Consequence ETEn R
e tact K. Groth (UMD) or Bill Butt
== contac . Uro or bi utiner, or
tuck connection ‘Componerr
ndenspeed Componer

Kevin Hartmann (NREL)

@ 2 X r, ,‘ N R E Katrina M. Groth, Ahmad Al-Douri, Madison West, Kevin Hartmann,

A. JAMES CLARK /) = a‘ Genevieve Saur, William Buttner. “Design and Requirements of a Hydrogen 10
SCHOOL OF ENGINEERING =% NATIONAL RENEWABLE ENERGY LABORATORY Component Rehablhty Database (HYCRGD),” Accepted in IJHE 2023.



HyCReD + QRA will enable usto 2%
set priorities .o

 Calculate failure rates per failure mode and severity class

* Identification of components with highest failure frequencies
and most impactful consequences (downtime).

* Identification which specific components & failure modes
dominate the risk.

* Develop reliability-centered maintenance (RCM) plans

Fueling Station Events-Failure Modes
Fail to operate Bent/warped/dam
504

"~

Fail open
S04

270
External leak-
Utility medium

00

FG1: Water Supply

- - of failures/service
Internal leak and Separation Mean Std. Dev. P
hydrogen 14 components (Critical 128 22034 181.39
9% . . 2 2
9% 34 risk scenarios 128 30639 395.68 03.3
[Degraded 149 2426 216.05 21115
External leak _ 5.83 300. 236.65
External rupture hydro Incipie 132.29 309.17
hydrogen " 66% 15271
¥ . 669 [Unkno:
504
1l mod: 543.73
77777
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Subtask E Active R&D Identified as of 2%
March 2023 ;’:?m

= E2 Develop advances to current QRA tools

=  Vysus, UMD: separate projects translating new data sources into inputs for QRA
(HyRAM and PLOFAM)

= Sandia: Currently on HyRAM+ 5.0
= CNL: QRA toolkit with expads upon HyRAM+ with new models
= Software efforts to incorporate models identified in task E1

= UMD: Multiple projects identifying QRA gaps to guide extension to algorithms in
HyRAM-+ or other tools, including need for data development (see E1), for fault trees,
physics of failure, and ignition modeling capabilities within tools.

= NTNU, SUT, CIEMAT, NOHU, NU: SUSHy project accident scenario development and
QRA studies

= U. Roma Spiena and DTU — QRA methods for vehicles in road and rail tunnels and car
parts

= Lund — Models for H2 accumulation in enclosures

= SINTEF et al - SH2IFT2 Experimental modeling campaign for hydrogen releases & fires
= NTNU ELVHYS — Developing safety barriers and hazard zoning strategies

= UiB and UiS — Enabling and benchmarking risk assessment for ships

¥ @}/ A.JAMES CLARK
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Example: QRA of a hydrogen fuel cell 2%
forklift

=  QRA study to identify & prioritize
failure causes, release scenarios,
probabilities and consequences of
a hydrogen fuel cell forklift.

= Similar QRA method used for indoor » o
hydrogen dispensers (in NFPA 2)

= Used validated H2 consequence E
models (HyRAM) & three public data
sources (HyRAM, OREDA, CCPS)

=  Focus on:

= [dentifying the most risk-
significant components

Generic H2 forklift system design sYrRRA

Release & flame
simulations

" Assessing whether risk is
tolerable (comparison with BLS

(atisti Total risk (FAR, AIR) Component Risk Reduction
statistics) e S i et WOrth
. . € scenario_ Pressure section - - Jet Fire - S— Dlg:p::wm e
F.L Filtcr leak All 1.720
= Results could inform design e ¢ I o -——
. . Major release I;’h::;mm %Zéi Eﬁ:i’ g; %-}%i ::1"3 g:‘::-f‘rr g::—t ::z :’:j‘tl“"! 1o close i:: :%ﬁ
modifications and/or codes and — 1 S—(— —
Tow 0 0 0 | Fauli Tree Ty Description Seenarios)  Tpmw
Minor release Medium 0 0 0 FRDI_FR FRD1 failure to reseat All I.B_T_'i
standards. (A T I |l
Major release Medium 136 x 1076 0.07 272% 1072 Reg2 L Regulator 2 leak All 1.0013
) Higl 2.67x 107 134 5.34% 107! Reg2 F1O Regulator 2 failure o open  All 1.0009
Total 295%x 107 1.42 590x 1077
BRSI7),
9 % _ . o . .
@ g A JAMES CL ARK Al-Douri, A., Ruiz-Tagle, A. & Groth, K. A Quantitative Risk Assessment of Hydrogen Fuel Cell 13
Q
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Insights from the forklift QRA @

Conseq. Scenario Section AIR FAR  #Fatal/yr s5¥YRRA
Low 0 0 0.00 o . . .
Minor Release Medium 0 0 0.00 High-pressure section fzontrlbutes
- High 0 0 0.00 about 92% of overall Risk values,
t .
erre Low 327E-06  0.16 0.07 but low and medium pressure
Major Release %eilum ?Zig'gg (2)-;‘7‘ ?(1)? sections also contribute
1g . - . . ° . < _ e, ey
Total Jet fire 6.14E-05 _ 3.07 123 e
Low 0 000 0.00 (within tolerability criteria — but
Minor Release Medium 0  0.00 0.00 close).
Exposion High 0 000 0.00 « FAR is > 0.295 fatalities/1 00M
Low 1.41E-06 0.07 0.03 h dri b lerabili
Major Release Medium 1.36E06 007 003 ours~driver (above folerability
High 2.67E-05  1.34 0.53 criteria; BLS shows FAR of 2.95 for
Total Explosion 2.95E-05  1.47 0.59 all material handling occupations).
oTAL  Total 9.09E-05 4.54 1.82
* A handful of component failure modes offer greatest potential for risk reduction:
PRDs, Regulators, FC, Filter
* PRD leaks, closure failures dominate facets of risk (beyond protective function).
High Pressure Medium Pressure Low Pressure
Fault Tree 1) Description - Fauli Tree 1) Description Tmw Fault Tree 11D Deescription lopw
F_L Filter keak L72 FRID1_FR PRI failure to reseat L&Y FRIDZ_FE PEIX? failure o peseat 1.6
TPRILP TPRI} prematurely opens 140 PRII1_L PRI leak 1.55 PRIDZ_L PRI? kak 1.43
CHVITC  Coockvaivcfilciodom 103 | Banl PRDI prematurcly opens 121 | pEMFCL PEMFC leak 1.20
J “Ck valve fanlure to close LUS Reg2 . Regulator 2 keak L00 WV P I v urely Opens 7
CHV L Check valve leak Lol Reg2 FTO Regulator 2 failure o open 100 RO PROZ prematurely opens 1.1
| § ) A JAMES CL ARK Al-Douri, A., Ruiz-Tagle, A. & Groth, K. A Quantitative Risk Assessment of Hydrogen Fuel Cell 14
%:;mé SCHOOL OF ENGINEERING Forklifts. Int’l Journal of Hydrogen Energy 2023. Doi: 10.1016/j.ijhydene.2023.01.369



Key takeaways from forklift QRA {%;r’

sYRrA

1. Study number of PRDs and their positioning in

a forklift for risk-reduction purposes. ScienceDrect
2. Focus on inspection, monitoring, and maintenance s ——
of the filter and pressure relief devices in a ol i T assessmentofhydogenfuel - 2
forklift’s storage and delivery system. s e o eyt
3. Minimize any containment of components M
prone to leakages or gas releases (c.g., pressure e
relief devices, check valve, and filter), even low ey
pressure -> ensure rapid, direct dispersion to EF o
mitigate potential explosion risks.

4. Creating and maintain a database for H2
incidents & reliability data to help identify
major operational hazards and the most likely
components to fail. e e :

See: HyCReD project S ey et o i

Martin Ha lLf.gz pu_.'l:l e, \_AII&#T‘ rk, MD 20742, USA.
{4 Al-Dourd, |.._,e arr (A Ruiz-Tagle), kproth@ur [EM. Groth).

ications LLC Published by Hsevier Lid. All rights reserved.
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Subtask E Active R&D Identified as of 2%
March 2023

= E3 Develop advanced QRA methods and prognostics and health monitoring
(PHM) techniques

= UMD: SIPPRA project (Systematic Integration of PHM with Probabilistic Risk
Assessment) — leveraging machinery data, machine learning & causality to
enable system diagnosis and prognostics (SIPPRA)

= Developing applications in pipelines, fueling stations
= UMD & NREL Connection of PHM techniques and sensor monitoring to
enable anomaly detection in LH2 on-site storage.

sYRrA

= NTNU and partners: SUSHy developing digital twins and dynamic simulation
for H2 fueling station systems

¥ @ A.JAMES CLARK
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sYrRrA

Subtask E Active Case studies

= [E4 System safety analysis of hydrogen technologies through case studies &
RCS activities.

= Two key outputs are presented in other papers at this conference
= Subtask A: Connection to Subtask A H2 storage example (ID227 @12pm)
= Hydrogen Equipment Enclosure QRA study — (ID159 Th@38:50)

= Many partners working on additional examples; too many to characterize.
Subtask E focus: Developing QRAs for electrolyzers, enclosures, and fueling
stations,

e — 40' container (12 mx 2.4 mx 2.4 m)
595CEM =

4"-*‘1,1‘ ‘ ) "B - SP3.

Leak —
_P_osmon 1

‘ 1.2 08 80
o) — Flammable mass {4%-75%) —Flammable mass (4%-75%|
~ specific flammable mass (8%-75%) 0.7 Specific flammable mass (8%-75%) 70
2 1
e X » Tocal mass Tots mass
! Position 1 = 06 specific flammable volume (8%-75%) 60
<08 S S = E
@ - 205 50 2
2 ] . - VE
Leak C g i e PR
Eos - | oa P 0%
g / g e - H
(0.358 mm) g o3 = g 0§
04 | 3 e . g
4 - | T -
Vertical Z+ | 02 v 2
0z | /
| 01 . 10
595 CFM | e g
ERSI, ol o e o
-~ Yo 0 5000 10000 15000 20000 0 50 100 150 200 250 300
]f@; A. hMES CLARI< Time since start of leak (sec) Time since start of leak (sec)
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sYRrA

Closing thoughts & takeaways

= Subtask E addresses a need for systems-focused approaches: Reliability
engineering & risk analysis provide the technical basis for supporting
decisions about H2 systems safety

= Recent studies suggest:

= Need more studies on role of PRDs, filters, and check valves (reliability,
ispection, monitoring, maintenance, and positioning).

= (ritical need for databases like HyCReD

= Do you have data to support active research?

= Reliability & maintenance info: FMEA, FRACAS maintenance records, field data,
monitors, sensor logs

= QOperational monitoring logs & sensors
= [Interested in joining us?
= Contact: kgroth(@umd.edu

,;/@;g A.JamMmEs CLARK 18
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SYRrA

Systems Risk and Reliability
Analysis Laboratory

Thank you!

Katrina Groth
Subtask E
Associate Professor, Mechanical H2 System Safety
Engineering
Associate Director, Center for Risk El E2 E3 E4
and Reliability D oo | A | At Q| e s
University of Maryland ook prognasics
kgroth@umd.edu — =,
Industry guidance
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