

Exceptional service in the national interest RISK SENSITIVITY STUDY AS THE BASIS FOR RISK-INFORMED CONSEQUENCE-BASED SETBACK DISTANCES

For Liquid Hydrogen Storage System

Brian D. Ehrhart, Benjamin B. Schroeder, and Ethan S. Hecht

10th International Conference on Hydrogen Safety (ICHS 2023) Québec City, Québec, Canada September 19-21, 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

GOAL AND APPROACH

Goal:

To use **risk-informed methods** to **justify a hydrogen release leak size** that allows for calculation of **consequence-based separation distances** that **vary with pressure and pipe size**

Approach

- Estimate risk-based separation distances for representative system
- Calculate equivalent hole size for consequence-based distances
- Select conservative hole size and use to calculate table values

REPRESENTATIVE LIQUID HYDROGEN SYSTEM

- Informative process schematic from CGA P-28 (2014) Standard used as representative system
 - Included liquid hydrogen-wetted components only
- Storage system only
 - Not industrial process plant
 - Not refueling station
- Number of components varied in sensitivity study (details to follow)

HYRAM+ QUANTITATIVE RISK ASSESSMENT MODELS

- Fault tree estimates system annual leak frequencies from per-component estimates
 - High uncertainty in leak frequencies due to inherent variability and lack of data specific to LH₂
- 5 order of magnitude leak sizes: 0.01%, 0.1%, 1%, 10%, 100% of flow area
- Event tree estimates probability of 4 possible outcomes
- Harm calculated based on thermal effects (jet fire) or overpressure effects (explosion) at fixed location
- Probits used to estimate likelihood of fatality based on estimated harm

RISK-BASED DISTANCE ESTIMATION

- Risk from system can be quantified as a function of distance away from the leak point
- Point at which the risk falls below a given metric (criterion) yields a risk-based distance
 - Can result in individual risk contours
 - Risk decreases due to distance from thermal and overpressure hazards
 - 2 x 10⁻⁵ fatalities/year used as criterion, based on gasoline refueling stations
- Purely risk-based distance not always best for prescriptive requirements
 - Highly sensitive (next slide)
 - Difficult to explain to code committees or authorities having jurisdiction (AHJs)

RISK-BASED DISTANCE FOR VARIABLE PIPE SIZE

- **Pipe diameter** is one of the **most important parameters** for risk-based distance sensitivity
 - Pipe size relatively easy for AHJ review as a basis for prescriptive requirements
- Calculate a risk-based distance for set of inputs, varying only the pipe size
 - Pipe risk-based distance discontinuity due to step-change in ignition probability

EQUIVALENT FRACTIONAL HOLE SIZE

- Calculate leak hole size that would give same consequence-based distance
 - Based on physical hazard criteria
 - Unignited concentration: 8% by volume
 - Heat flux: 4.7 kW/m2
 - Peak overpressure: 6.9 kPa (1 psi)
- For each **equivalent** hole size, calculate **fractional hole size** based on pipe flow area

SELECTION OF EQUIVALENT HOLE SIZE

- For each pipe size, select smallest equivalent fractional hole size
 - This would be the "driving" hazard for a given setback distance
 - Other consequence models using the same fractional hole size would result in longer distances than the risk-based distance

RISK ASSESSMENT SENSITIVITY

Individually varied many of the QRA inputs:

- System-specific
 - Pipe diameter (previously shown)
 - Fuel phase
 - Fuel pressure
 - Number of components
- Consequence-specific
 - Overpressure method
 - BST Mach flame speed
 - Discharge coefficient
 - Relative humidity
- Risk-specific
 - Thermal exposure time
 - Detection credit
 - Ignition probabilities
 - Thermal probit
 - Overpressure probit
 - Risk metric

EQUIVALENT HOLE SIZE SENSITIVITY

- The equivalent fractional hole size can then be repeated for each item of the sensitivity case study
 - Results in 26 individual lines, each of which vary with pipe diameter
- Almost all cases cluster below 5-10% equivalent fractional hole size

OVERLY-CONSERVATIVE CASES: DETONATION OVERPRESSURE

2 cases exceed 10% equivalent fractional hole size at largest pipe diameter:

Detonation-based overpressure methods

- BST method with Mach flame speed of 5.2 too high for non-premixed jet
- Bauwens/Dorofeev model assumes detonation of fraction of flammable mass, but model has limited validation data

These **methods tend to overpredict experimental measurements** based on delayed ignition of unconfined hydrogen

OVERLY-CONSERVATIVE CASES: SUB-COOLED LIQUID, EXPOSURE TIME, AND THERMAL PROBIT

Pipe Inner Diameter [inch] 0 1.5 2.0 1.0 2.5 12

3 cases exceed 5% equivalent fractional hole size at largest diameter:

- Sub-cooled liquid source
 - HyRAM+ **neglects piping effects** (e.g., flow losses and heat transfer) that would heat up cryogenic hydrogen (≈20 K)
 - Experiments that were intentionally trying to release liquid hydrogen could only get a two-phase mixture, not even a saturated liquid
- Tsao and Perry thermal probit
 Includes infrared effects in addition to ultraviolet
 - Hydrogen flames radiate weakly, meaning infrared radiation likely to be low
 - Does **not account** for protection from **clothing**
- Thermal exposure time: 60 seconds (double nominal)
 - Multiple sources recommend 30 second (or less) response time to move away from flame
 - Weakly-radiating hydrogen flame can **decrease harm over distance quickly**

SELECTION OF 5% FRACTIONAL LEAK AREA

Sensitivity results are almost all below 10% fractional leak area

- Only 2 of 26 cases exceed 10% at largest pipe inner diameters
- Only 3 of 26 additional cases exceed 5% at largest pipe inner diameters
- 21 of 26 cases are below 5% fractional hole size for all inputs and pipe diameters considered

Possibilities considered:

- Use 10% hole size as conservative hole size (too conservative)
- Use 5% hole size (generally conservative)
- Use ~3% hole size (mid-range, may not be sufficiently conservative)

5% fractional hole area selected as basis for consequence-based setback distances

• See ICHS Paper #140 for details on calculation of setback distances

CONCLUSIONS

Risk-based distances can be highly sensitive to system parameters and modeling assumptions

Sensitivity study of risk-based distances quantified variability, and led to conservative but not unrealistic choice in leak size

Fractional leak size can allow "credit" for differences in pipe size

Risk-informed justification for consequence-based setback distances can utilize useful aspects of consequence-based distances while still incorporating trends from risk assessment

POTENTIAL FUTURE WORK

Use same methodology to revisit gaseous hydrogen requirements

Include cryogenic pooling scenarios Improved validation from upcoming experiments

Better characterize hydrogen-specific overpressure

Use similar methodology to assess liquid transfer points

THANK YOU! QUESTIONS?

bdehrha@sandia.gov

FRACTIONAL HOLE SIZE

Fractional instead of absolute hole sizeNFPA 2 GH2 tables use 1% of flow area

Gives "credit" for using smaller pipe diameters

• Smaller pipes lower risk by limiting the consequences

Allows setbacks to grow for larger pipe diameters Fractional area leak size:

• Fraction =
$$\frac{A_{leak}}{A_{pipeID}} = \frac{\frac{\pi}{4}d_{leak}^2}{\frac{\pi}{4}d_{pipeID}^2} = \left(\frac{d_{leak}}{d_{pipeID}}\right)^2$$

MASS FLOW RATE-COMPARISON AND JUSTIFICATION

• Calculations use homogenous equilibrium model (with search for maximum mass flux)

GJ

• Experiments attempting to get maximum liquid don't see flows approaching metastable liquid model (MLM)

- HyRAM+ distances are slightly longer (more conservative) than VentJet
- Distances calculated along streamline rather than just x-distance adding additional conservativism

HYRAM+ VS AP FLAME: 90 PSI, 0.5" HOLE

- High density of LH2 results in low momentum release rates
- HyRAM+ modified to include the effect of wind; results in similar distances to AP flame
- Largest projected heat fluxes onto the ground are used as exposure distances

MODEL JUSTIFICATION: UNCONFINED OVERPRESSURE

- Work by Jallais et al. (2018) suggested use of modified TNO ME or BST method for calculating overpressure from delayed ignition of hydrogen jet
 - Source energy of blast wave is calculated from flammable mass from 10-75% (not 4-75%)
 - Blast wave curve (blast intensity) is tied to mass flow rate of leak; deflagration (not detonation)
 - Compared models to experimental data and high-fidelity models
- This approach was implemented using HyRAM+ and compared to AP JetEx model
 - Similar results obtained
- Overpressures compared to DNV-GL release data
 - Peak overpressures overpredicted by 3-10 times (conservative)

CRITERIA JUSTIFICATION: JET FLAME HEAT FLUX

Exposure types to consider:

- People
- Cars
- Buildings
- Combustibles

NFPA 2 GH2 currently uses:

- Group 1: 4.732 kW/m² (based on IFC 2003 exposure for employee for 3 minutes)
 - Previously was 1.577 kW/m² (based on IFC 2003 exposure at property line); now same as Group 2
- Group 2: 4.732 kW/m² (based on IFC 2003 exposure for employee for 3 minutes)
- Group 3: 20 kW/m² for combustibles, 25.237 kW/m² for noncombustibles (IFC 2003)

Visible flame length is currently used for NFPA 2 GH2 Group 3

NFPA 59A Table 19.8.4.2.1

- 9 kW/m2: fatality of person outdoors without PPE
- 5 kW/m2: irreversible harm to person outdoors without PPE
- 25 kW/m2: harm/fatality to person inside building with combustible exterior
- 30 kW/m2: harm/fatality to person inside building with noncombustible exterior

LaChance et al. (2011):

- 1.6 kW/m2: No harm for long exposures
- 4-5 kW/m2: Pain for 20s exposure; first degree burn
- 9.5 kW/m2: Second degree burn after 20s
- 12.5-15 kW/m2: First degree burn after 10s; 1% lethality in 1min
- 25 kW/m2: Significant injury in 10s; 100% lethality in 1min
- 35-37.5 kW/m2: 1% lethality in 10s

Will use: 4.732 kW/m² for Group 1, 9 kW/m² for Group 2, and 20 kW/m² for Group 3

CRITERIA JUSTIFICATION: PEAK OVERPRESSURE

Exposures to consider:

- People
- Cars
- Buildings

Hecht and Ehrhart, ICHS 2021

- Group 1: 0.7 psi
- Group 2: 2.3 psi
- Group 3: 10.2 psi

NFPA 59A Table 19.8.4.3.1

- 3 psi fatality to person outdoors
- 1 psi irreversible harm to person outdoors
- 1 psi limit for buildings

Will use:

- 1 psi for Group 1 exposures,
- 2 psi for Group 2 exposures,
- 3 psi for Group 3 exposures

Table 1. Effect of overpressure on humans (highlighted in red) and structures, as well as selected Groups 1 and 2 overpressure criteria (highlighted in blue)

Overpressure		
kPa	psi	Damage
0.2	0.0	Occasional breakage of large windows already under strain [9, 10]
0.3	0.0	Loud noise. Breakage of windows due to sound waves [9]
0.3	0.0	Loud noise (143 dB) [11]
0.7	0.1	Breakage of small panes of glass already under strain [9]
2.0	0.1	1 nresnoid for glass breakage [11, 12]
2.0	0.3	20% windows broken. Minor structural damage to houses [0]
2.0	0.5	20% windows broken. Winor structural damage to houses [9] Shotter glace [12]
3.5-6.0	0.5	Large/small windows usually shattened: occasional damage to window frames [11]
6.8	1.0	Partial demolition of houses, which become uninhabitable [9, 11]
6.9	1.0	Selected Group 1 Criteria
7.0	1.0	Window glass shatters. Light Injuries from Fragments [14]
7.0	1.0	Knock a person over [13]
9.0	1.3	Steel frame of clad building slightly distorted [11]
6.9 - 13.8	1.0 - 2.0	Threshold of skin lacerations by missiles [12]
13.6	2.0	Partial collapse of house roofs and walls [9–11]
13.7	2.0	Selected Group 2 Criteria
13.8	2.0	Threshold for eardrum rupture [12]
13.8	2.0	Possible fatality by being projected against obstacles [12]
14.0	2.0	Moderate damage to homes (windows/doors blown out, damage to roofs) [14]
14.0	2.0	People injured by flying glass and debris [14]
10.3 - 20.0	1.5 - 2.9	People knocked down by pressure wave [12]
15.8	2.3	Lower limit of serious structural damage [11]
16.2	2.3	1% of eardrum breakage [9]
13.1-20.4	1.9-3.0	Destruction of cement walls of 20–30 cm width [9]
17.0	2.5	1% fatality [15]
15.0-20.0	2.2-2.9	Collapse of unreinforced concrete or cinderblock wall [12]
20.7	3.0	Selected Group 3 Criteria
20.7	3.0	Steel frame building distorted and pulled away from foundations [11]
21.0	3.0	0% probability of fatality in the open [15]
20.4-27.7	3.0-4.0	Bunture of storage tanks [9]
20.7 - 27.6	3.0-4.0	Frameless, self-framing steel panel building demolished [11]
20.0-30.0	2.9 - 4.4	Collapse of industrial steel frame structure [12]
27.6	4.0	Cladding of light industrial buildings ruptured [11]
27.6 - 34.5	4.0 - 5.0	50% probability of fatality from missile wounds [12]
34.0	4.9	Injuries are universal fatalities widespread [14]
34.0	4.9	Most buildings collapse [14]
35.0	5.1	15% probability of fatality in open [15]
35.0 - 40.0	5.1 - 5.8	Displacement of pipe bridge, breakage of piping [12]
34.0 - 47.6	4.9-6.9	Almost total destruction of houses [9, 11]
34.5-48.3	5.0-7.0	50% probability of eardrum rupture [12]
48.3	7.0	I preshore of heids will of 00, 20 president [12]
47.7-54.4	5.9-7.9	Dreakage of Drick walls of 20–30 cm width [9, 11]
48.3-08.9	10.0	Probable total destruction of buildings [0-11]
60.0	10.0	Reinforced concrete buildings are severally damaged or demoliched [14]
69.0	10.0	Most people are killed [14]
70.0	10.2	Total destruction of buildings; heavy machinery damage [12]
50.0 - 100.0	7.3 - 14.5	Displacement of cylindrical storage tank, failure of pipe [12]
55.2 - 110.3	8.0 - 16.0	People standing up will be thrown a distance [12]
68.9 - 103.4	10.0 - 15.0	90% probability of eardrum rupture [12]
90.0	13.1	50% fatality [15]
82.7 - 103.4	12.0 - 15.0	Threshold for lung hemorrhage [12]
101.0	14.6	1% death due to lung hemorrhage [9]
138.0	20.0	Heavily built concrete buildings are severely damaged or demolished [14]
138.0	20.0	Fatalities approach 100% [14]
137.9 - 172.4	20.0 - 25.0	50% probability of fatality from lung hemorrhage [12]
169.2	24.5	90% death due to lung hemorrhage [9]
206.8-241.3	30.0-35.0	90% probability of fatality from lung hemorrhage [12]
300.0	43.5	95% fatality [15]
482.0-1379.0	70.0-200.0	immediate plast latalities [12]

RISK DISCONTINUITIES FROM IGNITION PROBABILITIES

- Current ignition probabilities based on mass flow rate
 - Probability step-changes at specific mass flow rate thresholds
- One of the leak sizes passes through two thresholds
 - Causes step-changes in risk
- Need for better characterization of ignition probability

