

Launch of the STACY Project – Towards Safe Storage and Transportation of Cryogenic Hydrogen

Ernie Reinecke, Ahmed Bentaib, Nabiha Chaumeix, Hirohisa Tanaka, Yves Ballossier, Shannon Krenz

International Conference on Hydrogen Safety, Québec City, Canada, September 19-21, 2023

European Interest Group (EIG) CONCERT-Japan

European Interest Group (EIG) CONCERT-Japan

- 13 science, technology and innovation (STI) funding agencies from 11 European countries and Japan
- supporting Japanese-European research collaboration in a variety of fields
- supporting sustainable and multilateral research cooperation, especially promoting the transnational mobility between European and Japanese researchers
 - Research-Network between Europe and Japan

European Interest Group (EIG) CONCERT-Japan

Call 2021: "Sustainable Hydrogen Technology as Affordable and Clean Energy"

- Ammonia hydrogen combustion in micro gas turbines (ADONIS)
- Structure-based metabolic engineering of algal H₂ production (H2M)
- Towards Safe Storage and Transportation of Cryogenic Hydrogen (STACY)
- Japanese-European Research Collaboration of New Affordable and Durable Electrocatalysts for Fuel Cells (NADC-FC)
- Sustainability development and cost-reduction of hybrid renewable energies powered Hydrogen stations by risk-based multidisciplinary approaches (SUSHy)
- Enhancement of Hydrogen Storage Properties of AlTiVCr Light Weight High Entropy Alloys (HEA) by Ti₃C₂ MXene and Severe Plastic Deformation (EHSAL)

STACY – Towards Safe Storage and Transportation of Cryogenic Hydrogen

Background

- World-wide efforts to decarbonize the energy sector with increasing fraction of renewable energies
- Energy storage technologies required to store excess energy generated from fluctuating sources
- Large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) expected to play a fundamental role in a potential future hydrogen economy

LH2-related safety issues

HySafe Research Priority Workshop, Québec City, October 2022

- High ranked hazards, relevant for maritime transportation:
 - Confined and unconfined explosions
 - Cryogenic spills on steel
 - Accumulation of flammable gas mixtures
 - Dense gas dispersion from LH2 releases

•

STACY – Main Objectives

Contribute to the safety assessment of LH2 storage and transportation on long-distance carriers

- (1) determine fundamental safety-related combustion parameters not yet available in the open literature,
- (2) study mitigation by means of catalytic recombiners to prevent the formation of flammable gas mixtures in case of leakages,
- (3) simulate potential hydrogen release scenarios and efficiency of mitigation measures.

STACY – Main Objectives

in ca

Contribute to the safety assessment of LH2 storage and transportation on long-distance carriers

(1) determination & ustion
para
(2) stud to p

Linstitutions

| Line | L

(3) simulate potential hydrogen release scenarios and efficiency of mitigation measures.

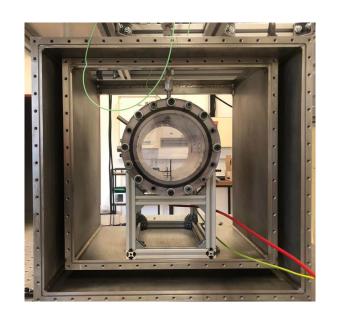
STACY – Research Team

Expertise in the fields of combustion, recombination, catalysis, hydrogen safety assessment

- **CNRS-ICARE**: Flame and explosion dynamics, explosion safety, involved in industrial projects and research programs
- IRSN: Hydrogen safety assessment in nuclear power plants, involved in development of safety assessment methodologies and risk prevention procedures
- KGU: Catalyst development, involvement in "intelligent catalyst" development at Daihatsu Motor Co., Ltd.
- FZJ: Hydrogen recombiners, involvement in industrial recombiner development and recombiner qualification

STACY – Specific Objectives (1)

(1) Fundamental safety-related combustion properties of H₂


- Background: Knowledge gaps for low temperatures identified in the PRESLHY project
- Experiments at combustion laboratory at CNRS/ICARE
 - the flammability domain
 - the flame speed
 - the expansion ratio
- → Criteria for e.g. flammability, laminar flame speed and flame acceleration under low temperatures

STACY – Specific Objectives (1)

(1) Fundamental safety-related combustion properties of H₂

- Double-walled box for vacuum insulation
- Circulation of refrigerant fluid within double layer of cylindrical bomb
 - → -20 °C with commercial cryostat
 - → -180 °C with in-house cryostat

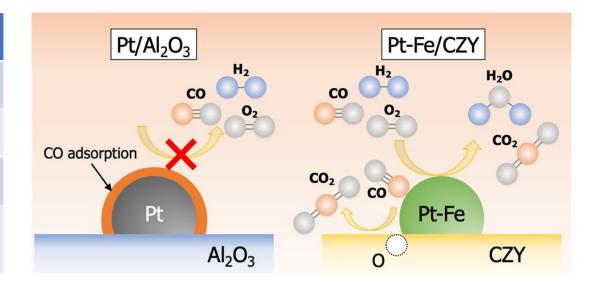
→ Criteria for e.g. flammability, laminar flame speed and flame acceleration under low temperatures

STACY – Specific Objectives (2)

(2) Mitigation by means of catalytic recombiners

- Develop and qualify a specific catalyst to operate under the typical conditions of a LH2 carrier
- Catalyst development, manufacturing, and lab-scale testing at KGU (Japan)
- Recombiner qualification at FZJ (Germany)

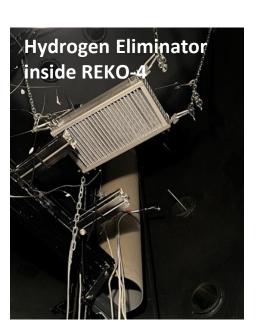
→ Numerical model to describe recombiner operation



STACY – Specific Objectives (2)

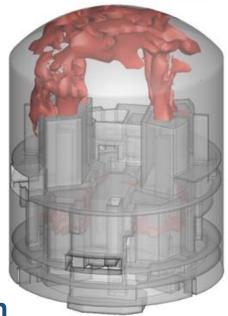
(2) Mitigation by means of catalytic recombiners

Issues	Solution
1) Cryogenics	Nano-particulation, Intelligent Catalyst
2) Ignition	Multi-stage design
3) High Flow	Nano-particulation
4) Poisoning	Utilizing technology accumulation through materials research Water / CO / Oxygen


→ Numerical model to describe recombiner operation

(2) Mitigation by means of catalytic recombiners

 Determination of operational characteristics at temperatures down to -80 °C



STACY – Specific Objectives (3)

- (3) Simulation of potential hydrogen release scenarios and efficiency of mitigation measures
- Further develop numerical methods to describe hydrogen release and mixing under specific conditions of LH2 transportation
- Application of well-proved codes
 - to study potential accident scenarios, and
 - to provide information on potential boundary conditions and locations for additional mitigation measures
 - → Information on hazardous areas and the efficiency of mitigation measures (active and passive venting, catalytic recombiners)

STACY – Industrial Advisory Board

Ensuring the relevance of the scientific research

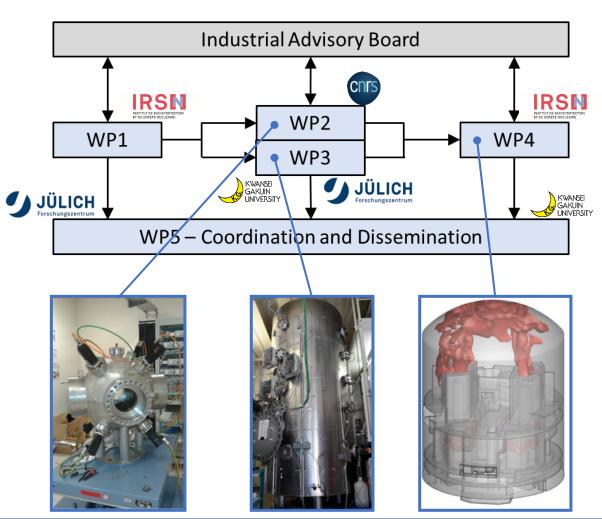
Kawasaki HI LH2 carriers

Daihatsu Motor Co. LH2 storage, car catalyst

JAEA
 Hydrogen safety in nuclear power plants

Air Liquide Production, storage, and distribution of GH2/LH2

CCD Prototyping catalytic systems


EnerSys-Hawker Catalytic recombiners

STACY – Work Packages

Duration: March 2022 – July 2025

- WP 1: Critical review
 and scenario identification
- WP 2: Combustion fundamentals
- WP 3: Catalytic recombination
- WP 4: Safety methodology assessment
- WP 5: Coordination and Dissemination


Intensifying International Collaboration

September 5-13, 2022

- Collaborative performance of experiments @FZJ
- Visit of CNRS/Orléans and IRSN/Paris

September 7-13, 2023

Collaborative performance of experiments @FZJ

1st STACY Workshop

December 15/16, 2022, Kobe International Conference Center, Japan

- Organized by Tanaka Laboratory, Endorsed by Kwansei Gakuin University
- Symposium
 - Lectures by STACY PIs and IAB

- LH2 excursion through the courtesy of Kawasaki Heavy Industries
 - Hydrogen co-generation system
 - LH2 receiving terminal
- Young Generation Workshop

 Technical Tour to SPring-8 synchrotron radiation facility

2nd STACY Workshop

September 4/5, 2023, CNRS, Orléans, France

- Organized by ICARE
- Symposium
 - Lectures by STACY PIs, IAB and related projects
 - KHI, AirLiquide, Cataler Corp.
 - Didier Bouix, EOCONCEPT
 - French national project AIDHy
 - SUSHy, ELVHYS, ESKHYMO

- Young Generation Workshop
 - CORIA (Rouen University)
 - Pprime (Poitiers University)
- Lab Tour

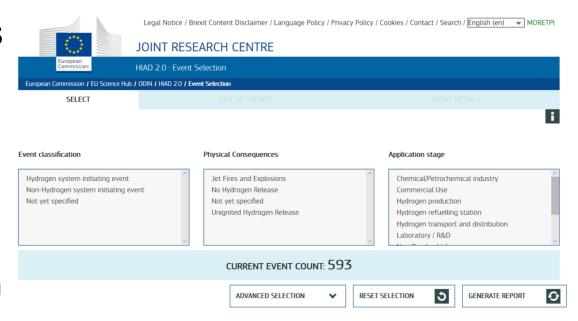
STAC'

- Combustion research
- Atmosphere research
- Space propulsion

International Dissemination

International Workshops and Seminars

- HySafe Research Priorities Workshop November 21-23, 2022, Quebec, Canada
- CNL Hydrogen Safety Workshop November 24-25, 2022, Ottawa, Canada
- Int. Workshop on Hydrogen Safety for NPPs January 19-20, 2023, Fontenay-aux-Roses, France
- 1st SUSHy Joint Workshop March 9-10, 2023, Bergen, Norway (online)
- ESKHYMO: LH2 Technical Workshop March 29-30, 2023, Paris, France
- ELVHYS 1st Stakeholder's Workshop June 21, 2023, Paris, France (online)



International Knowledge Management

Collaboration on Accident Databases

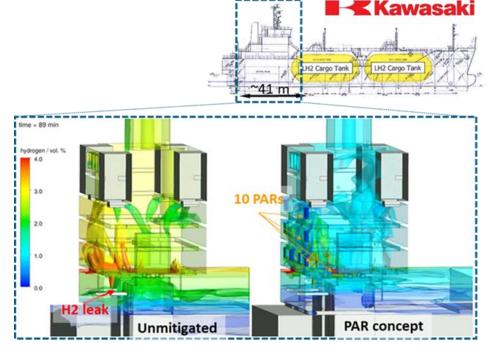
- Effort to stimulate collaboration between the European Hydrogen Safety Panel and Japanese experts
- Effort to exchange information,
 e.g. through databases on hydrogen incidents and accidents

HIAD 2.0 – Hydrogen Incident and Accident Database

International Knowledge Management

Potential Japanese Databases

The High Pressure Gas Safety Institute of Japan (KHK)


- → On-line meeting with KHK on June 16, 2023
- → Invitation of JRC/HIAD to Japanese Hydrogen Safety Workshop on September 25, 2023

Conclusions

- Contribution to LH2-related safety technologies, numerical models and methodologies for risk assessment
- Stimulate networking activities to promote hydrogen safety between European and Japanese institutions
- Exchange of hydrogen safety-relevant information through databases

Kelm et al., Simulation of H2 mixing and PAR operation during accidental release in an LH2 carrier engine room, ICHS, 2021

- The authors thank the European Interest Group CONCERT-Japan for their support of the project in the framework of the 8th Joint Call "Sustainable Hydrogen Technology as affordable and clean energy".
- The German sub-project of the joint project STACY is funded by the German Federal Ministry of Education and Research under grant number 01DR22007.
- The French sub-project acknowledges the financial support of the French government within the program "EIG CONCERT-JAPAN" STACY Grant agreement n° ANR-22-HTCE-0003-02.
- The joint project STACY is supported by Strategic International Collaborative Research Program of Japan Science and Technology Agency (JST SICORP), Grant Number JPMJSC21C3, Japan.

Thank you for your kind attention!

https://stacy-project.eu e.reinecke@fz-juelich.de

GEFÖRDERT VOM

Égalité

Fraternité

