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ABSTRACT  

To quantify the risk of an accident in a liquid hydrogen system, it is necessary to determine how often 

a leak may occur. To do this, representative component leakage frequencies specific to liquid hydrogen 

can be determined as a function of the normalized leak size. Subsequently, the system characteristics 

(e.g., system pressure) can be used to calculate accident consequences. Operating data (such as leak 

frequencies) for liquid hydrogen systems are very limited; rather than selecting a single leak frequency 

value from a literature source, data from different sources can be combined using a Bayesian model. 

This approach provides leakage rates for different amounts of leakage, distributions for leakage rates to 

propagate through risk assessment models to establish risk result uncertainty, and a means for 

incorporating liquid hydrogen-specific leakage data with leakage frequencies from other fuels. 

Specifically, other cryogenic fluids like liquefied natural gas are used as a baseline for the Bayesian 

analysis. This Bayesian update process is used to develop leak frequency distributions for different 

system component types and leak sizes. These leak frequencies can be refined as liquid hydrogen data 

becomes available and may then inform safety code requirements based on the likelihood of liquid 

hydrogen release for different systems. 

INTRODUCTION 

Risk assessments are generally used to analyze a specific system by identifying potentially high-risk 

activities, scenarios, or components. A risk assessment can also be used to quantify the risk of an entire 

facility, which enables comparisons to alternative options. Alternatively, risk assessment can be 

performed with a representative facility in order to better inform regulations, codes, and standards 

requirements and attempt to improve safety for many facilities at once. For example, this was done in 

the U.S. National Fire Protection Association (NFPA) fire codes by LaChance et al. [1] for gaseous 

hydrogen bulk storage systems. In this case, a quantitative risk assessment was used to estimate the risk 

for a representative system, which was then used by the code committee (along with information about 

leak frequencies in particular) to select a design leak scenario by which certain code requirements would 

be determined. A similar analysis is needed for liquid hydrogen systems to better inform similar code 

requirements. 

To quantify the risk of an accident in a liquid hydrogen system, it is necessary to determine how often 

a leak may occur. To do this, representative component leakage frequencies specific to liquid hydrogen 

can be determined as a function of the normalized leak size. Normalized leak sizes are used because 

component sizes within and between systems vary and there are insufficient data to derive leak 

frequencies for each size of each type of component. The intent of the normalized leak size is to enable 

leak frequency estimation at the component level. Once leak frequency estimates are established, system 

characteristics (e.g., system pressure) can be used to calculate accident consequences.  

Operating data (such as leak frequencies) for liquid hydrogen systems are very limited, which presents 

a challenge for leak frequency estimation. In this analysis, we use leak frequency data from similar fuels 

to demonstrate the estimation methodology, as well as the need for liquid hydrogen system data to 

improve the estimates. Rather than selecting a single leak frequency value from a literature source, data 

from different sources were combined using a Bayesian model, as in previous analyses [1, 2, 3]. This 
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approach provides leakage rates for different amounts of leakage (characterized by the fractional leak 

area), uncertainty distributions for leakage rates to propagate through risk assessment models, and a 

means for incorporating liquid hydrogen-specific leakage data with leakage frequencies from other 

fuels.  

Gaseous hydrogen and other cryogenic flammable fluids like liquefied natural gas were used as a 

baseline for the Bayesian analysis. The assumption underlying use of this data is that these systems and 

the mechanisms causing leaks within them should be similar to those in liquid hydrogen systems. Hence, 

these analogous systems can be used to inform belief about how liquid hydrogen systems behave with 

respect to leaks, but the assumption remains untested until more liquid hydrogen data are obtained.  

The Bayesian update process is used to develop leak frequency distributions for different system 

component types and leak sizes. Because data for gaseous hydrogen systems and liquefied natural gas 

systems were both used, only components common to both systems were analyzed. The resulting leak 

frequencies can be refined as liquid hydrogen data becomes available and may then inform safety code 

requirements based on the likelihood of liquid hydrogen release for different systems. 

MATHEMATICAL CHARACTERIZATION 

The goal of this analysis is to obtain estimates of liquid hydrogen leak frequencies using limited data. 

At its core, this is a problem of statistical inference. Operating experience from systems for different 

types of fuel provides data on leaks which is assumed to be representative of the future operation of 

similar systems. Though data are not available for all systems, this analysis treats the available data as 

a representative sample and uses it to infer conclusions about the expected annual leak frequency for a 

typical system. The representativeness of available data is a key assumption underlying this analysis 

which cannot yet be shown to be true but can be re-assessed and improved as future data becomes 

available.  

Given the sparsity of data, the goal is not just to obtain single point leak frequency estimates. Such 

estimates, while necessary for some types of risk analysis, should be interpreted with uncertainty. While 

this analysis seeks to make use of limited data, the methods cannot alleviate the need for more high-

quality data. Hence, this is not just a problem of inference, but also a problem of uncertainty 

quantification.  

Uncertainty has classically been dichotomized into epistemic uncertainty and aleatory uncertainty. 

Epistemic uncertainty (usually considered hypothetically reducible) describes the state-of-knowledge 

about something that is assumed to have a fixed value, whereas aleatory uncertainty describes inherent 

variability that cannot be reduced by gaining knowledge. Uncertainty in leak frequencies for liquid 

hydrogen systems is largely philosophically epistemic; components in these systems will leak with some 

frequency but that frequency is not known exactly. However, because the analysis estimates industry-

wide frequencies, aleatory uncertainty may also be present. There is inherent variability between 

different types of systems, sizes of components, and individual sites which likely lead to different actual 

leak frequencies. As long as the leak frequency estimate is meant to be applied industry-wide, it will 

contain these inherent differences [4].  

For the purposes of this analysis, the epistemic and aleatory uncertainties are not analyzed separately; 

the uncertainty is all treated mathematically as if it is epistemic, though it is a combination of aleatory 

and epistemic uncertainties. Characterization of epistemic uncertainty can be accomplished in multiple 

ways, which can be categorized broadly by probabilistic methods or non-probabilistic methods. The 

non-probabilistic category includes methods such as interval analysis, possibility theory, and evidence 

theory and the probabilistic category can be divided into frequentist (i.e. classical statistics) or Bayesian 

methods [4]. Probabilistic methods are ideal for this analysis because the goal is to provide leak 

frequencies that can be used in the context of risk analysis, which is often probabilistic. However, the 

choice between frequentist and Bayesian methods in this case is less straightforward.   
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Bayesian Framework 

Bayesian statistics are not altogether different from frequentist statistics; the theorem underlying the 

field is a basic result within frequentist statistics. Bayes’ Theorem is a statement of conditional 

probabilities, which in its simplest form, states that: 

𝑝(𝜃 = 𝜃∗|𝑥) ∝ 𝑝(𝑥|𝜃 = 𝜃∗)𝑝(𝜃 = 𝜃∗)  (1) 

where 𝑝 denotes probability, 𝜃 is a parameter characterized as a random variable, 𝜃∗ is a specific value 

of the parameter 𝜃, and  𝑥 denotes observed data. In essence, the theorem states that we can understand 

the probability of a specific parameter value given data by decomposing the problem into 1) the 

probability of the data assuming that specific parameter value, and 2) the probability that the parameter 

takes on that specific value. In Eq. (1), 𝑝(𝜃 = 𝜃∗|𝑥) is called the posterior, 𝑝(𝑥|𝜃 = 𝜃∗) is the 

likelihood, and 𝑝(𝜃 = 𝜃∗) is the prior. Typically, the posterior is what we want to understand, the 

likelihood is the information we can observe, and the prior is our initial state of belief about 𝜃 [5]. The 

prior allows objective information to be included when needed, as is the case when supplementing data 

with expert judgement.  

With respect to this leak frequency analysis, however, we do not want to supplement objective leak 

frequency data from leak events with subjective judgements. Instead, we chose to use Bayesian methods 

because of how uncertainty is characterized. Note in Eq. (1) that the prior does not just enable subjective 

information to be included; the prior assumes that that parameter 𝜃 is itself a random variable. This 

assumption is the vehicle through which the subjective information is included.  

The treatment of parameters as random variables is the key conceptual difference between frequentist 

and Bayesian methods that leads us to prefer Bayesian methods for leak frequency estimation with 

uncertainty. In a frequentist framework, the parameter 𝜃 above would be considered to have a fixed 

value that is unknown. By collecting data, we could hypothetically learn its true value. In the Bayesian 

framework, 𝜃 is treated as a random variable with a distribution rather than a fixed value. By collecting 

data, we could hypothetically learn its true distribution. This concept leads to hierarchical models in 

Bayesian statistics, which are useful tools for uncertainty propagation and can be calibrated using Bayes’ 

theorem. 

The specific model applied for leak frequency estimation is described in the next section, but the concept 

of the hierarchical model is as follows. Leak frequencies are assumed to arise from a specific model and 

that model defines the base of the hierarchy. We can collect data (leak frequencies from literature) at 

this level. The next level of the hierarchy consists of distributions on the parameters of the leak frequency 

model and these distributions have their own parameters, which can either have fixed values or 

correspond to another level of distributions. The parameters at the highest level of the hierarchy have 

fixed values, which are estimated using Bayes’ theorem. Hence, even when the model is calibrated, it 

propagates uncertainty from the top of the hierarchy down through the base model, which in our case 

describes leak frequencies.  

The reader is referred to [5, 6] for more detailed treatments of Bayesian statistics. 

Mathematical Model 

The mathematical model employed in this analysis assumes a normal distribution on the log-leak 

frequency for each fractional leak area. The means of these distributions for each fractional leak area 

are assumed to be related to each other linearly in log-space, as illustrated in Fig. 1. The normal 

distribution and linear relationship define the base of the hierarchical model which is assumed to govern 

the leak frequency data in the literature. Uncertainty in the model is incorporated via the assumed normal 

distribution; uncertainty is included in the mean through uncertainty distributions on the parameters of 

the line and through uncertainty distributions on the precision of the normal distribution at each 

fractional leak area.  
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Figure 1. The mathematical model applied to estimate leak frequencies assumes 1) a linear 

relationship in log-space between the fractional leak area bins and 2) normal distributions on the log-

leak frequency within each bin. Though the means of the distributions are related linearly, the 

precisions are not.  

The distribution on the log leak frequency is defined as: 

log(𝐿𝐹𝑗)~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝐿𝐹,𝑗, 𝜏𝑗),  (2) 

where 𝐿𝐹𝑗 is the leak frequency for the 𝑗th leak frequency bin, 𝜇𝐿𝐹,𝑗 is the mean of the normal 

distribution on log⁡(𝐿𝐹𝑗), and 𝜏𝑗 is the precision of that normal distribution. The log(𝜇𝐿𝐹,𝑗) is related to 

the log leak area (log(𝐿𝐴𝑗)) linearly by: 

log(𝜇𝐿𝐹,𝑗) = 𝛼1 + 𝛼2 log(𝐿𝐴𝑗), (3) 

where 𝛼1 is the intercept of the line and 𝛼2 is the slope. Uncertainty is propagated through this linear 

relationship, and hence through the normal distribution, by assigning uncertainty distributions to these 

linear parameters as follows: 

𝛼1~𝑛𝑜𝑟𝑚𝑎𝑙(𝛼11, 𝛼12) (4) 

𝛼2~𝑛𝑜𝑟𝑚𝑎𝑙(𝛼21, 𝛼22) (5) 

where 𝑎11 and 𝛼21 are the means of the respective normal distributions and 𝛼12 and 𝛼22⁡are the 

precisions.  

Finally, uncertainty is also included in the precision of each normal distribution: 

𝜏𝑗~𝑔𝑎𝑚𝑚𝑎(𝑠𝑗, 𝑟𝑗), (6) 

where 𝑠𝑗 and 𝑟𝑗 are the shape and rate parameters of the gamma distribution on 𝜏𝑗.  

With this mathematical structure, the normal distributions fit for the log leak frequency at each leak size 

will be different, but they are not wholly independent due to the assumption of a linear relationship in 

log space between the means. The distributions on 𝛼1, 𝛼2, and 𝜏𝑗 must be specified as priors and leak 

frequency data will be used to estimate final posterior distributions for 𝛼1, 𝛼2, and 𝜏𝑗, which will be 
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propagated through the model to produce final distributions on leak frequency. The model is presented 

in Fig 2.  

 

 Figure 2. A simple hierarchical model applies a normal distribution to model the log leak 

frequency with a single level above that incorporates uncertainty.   

The distributions selected for the priors were also chosen based on the previous work [2, 3]. They were 

defined as:  

𝛼1~𝑛𝑜𝑟𝑚𝑎𝑙(0, 10−3) (7) 

𝛼2~𝑛𝑜𝑟𝑚𝑎𝑙(0, 10−3) (8) 

𝜏𝑗~𝑔𝑎𝑚𝑚𝑎(4, 1) (9) 

The first two priors can be described as uninformed priors; they are centered at zero with low precision. 

This means that the state-of-belief as input to the model allows 𝛼1 and 𝛼2 to be positive or negative and 

allows their values to fall within a wide range of magnitudes. The distribution on 𝜏𝑗 is also uninformed 

in that it is defined to represent very little knowledge. A 𝑔𝑎𝑚𝑚𝑎(1,1) distribution would be a 

reasonable uninformed prior for this model as it would concentrate values of the precision closer to zero, 

but with a wide enough domain to allow for higher precision in the final model if suggested by the data. 

However, this distribution assumes too low a precision for the model to converge with limited data. 

Therefore, the first parameter was incremented, as has been done in previous leak frequency analyses 

[1, 2, 3], to shift the distribution towards higher precisions just until the model could converge.  

Once the priors were specified, multiple data sets were used to calibrate the model in sequential updates. 

This is because there were multiple data sets to inform the model. This is a repetition of the same 

calibration process except that the uninformed priors were only used for the first update; subsequent 

updates used the posteriors from the previous update as informed priors.  

The leak frequency model was implemented in the R programming language using the rjags package to 

call JAGS (Just Another Gibbs Sampler) [7, 8, 9]. The sampling was performed using 5 × 105 samples 

for initialization, 5 parallel chains, and 1 × 105 samples to update the model. These sample sizes were 

used for each sequential update. A final 1 × 105 samples were taken from the posterior distributions 

and of the predicted leak frequencies. These sample sizes were shown to be more than sufficient in a 

previous analysis that applied this model to estimate leak frequencies for liquid natural gas systems [3].  

DATA 

There is a need for leak frequency estimates that can be used in risk assessments for liquid hydrogen 

systems. However, data from liquid hydrogen systems are not currently available to inform these leak 

frequency estimates. Until such data can be obtained, the estimates rely on data from systems that were 

assumed to be informative and that have already been collected for previous analyses [1, 2].  

The first data set contains two categories of data: 1) generic data from the chemical processing, 

compressed gas, nuclear power plant, and offshore petroleum industries, and 2) data from gaseous 

hydrogen systems. These data were originally compiled for the analysis in LaChance et al. [1] and were 
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again used for Glover et al. [2]. They are applied within this analysis for the first update in the leak 

frequency model calibration. These leak frequency data for gaseous hydrogen are informative to the 

current analysis because they contain hydrogen-specific data. Thus, the leak-related behavior of gaseous 

hydrogen, containment material selection, and system design help inform the current analysis for liquid 

hydrogen systems.  

The second data set used in this analysis was originally compiled for estimation of liquid natural gas 

system leak frequencies in Mulcahy et al. [3]. This data set also contains two categories of data: 1) data 

from non-liquid natural gas systems that are judged in the original source to be applicable to liquid 

natural gas systems, and 2) data that originates from liquid natural gas systems. These leak frequency 

data for liquefied natural gas are informative to the current analysis because they contain cryogenic-

specific data. This means that cryogen-specific behavior, operating temperatures, and system design 

help inform the current analysis for liquid (cryogenic) hydrogen systems.  

This analysis estimates leak frequencies only for system components that are represented in the data sets 

for both updates: flanges and gaskets, hoses, joints, pipes, valves, and vessels. Results for each of these 

components are presented in the following sections and Table 1 describes the number of data points in 

each data set for each component.  

Table 1. Number of data points in each of the two data sets used to sequentially update the leak 

frequency model. 

Component Points in 1st Data Set Points in 2nd Data Set 

Flanges and Gaskets 17 32 

Hoses 12 16 

Joints 12 6 

Pipes 56 86 

Valves 35 61 

Vessels 9 168 

RESULTS 

Leak frequency distribution estimates are plotted in Fig. 3 through Fig. 8. The distributions are 

represented using violin plots, which are rotated and mirrored estimates of the probability density 

functions estimated using 105 leak frequency samples at each fractional leak area. Note that the model 

is described for the log leak frequency but the results are plotted for the leak frequency. The log leak 

frequency samples are exponentiated to convert them into leak frequency samples, but the distributions 

of these exponentiated samples still appear normal in plots because they are plotted on a log scale.  

The data points from each data set are shown as separate markers on each of the violin plots. The two 

data sets do not appear to trend in one direction in particular; as seen in Fig. 3, the GH2 (Data Set 1) and 

LNG (Data Set 2) leak frequencies seem to be interspersed. Importantly, neither data set contains 

frequencies for every leak size within every component. For example, the two smallest leak sizes (0.01% 

and 0.1%) for flanges (Fig. 3) appear to only have frequencies from LNG (Data Set 2). Thus, the 

resulting leak frequency distributions may be different for the combination of both data sets compared 

to distributions resulting from either data set individually.  
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Figure 3. The final estimates for flanges in liquid hydrogen systems demonstrate decreasing leak 

frequency with respect to leak size, but more variation in estimates for larger leaks. The increased 

spread in distributions for large leaks compared to small leaks may be due to the limited quantity of 

small leak data.  

The distribution estimates for flanges (Fig. 3), pipes (Fig. 6), valves (Fig. 7), and vessels (Fig. 8) show 

that large leaks occur less frequently than small leaks. This is consistent with the intuition that systems 

are designed specifically to prevent large leaks, so they may occur less by design. However, the opposite 

trend is seen for hoses (Fig. 4) and joints (Fig. 5). It is not clear whether the increasing frequency of 

leaks relative to leak size for these components is a realistic result reflecting physical differences 

between these components and the others, or whether this result arises due to insufficient data. Neither 

conclusion can be drawn without additional data, so leak frequencies for these components should be 

used cautiously.  

In addition to the general linear trends in model results, some of the distributions have unusually long 

tails. While normal distributions are defined on an infinite domain, these distributions are estimated 

using samples and the tails of these distributions should not be sampled frequently with just 105 samples. 

This result arises due to the form of some of the data in the first data set. Most of the data for this model 

are leak frequency estimates. However, the gaseous hydrogen data set was originally in the form of 

operational time and number of leaks of each size. Such data were included in the model by converting 

into maximum likelihood estimates of leak frequency. This results in a data point at 0 annual leak 

frequency for some leak sizes, which drives the overall precision down so the spread in the final estimate 

is high. Though this is not ideal, as it likely overestimates uncertainty, hydrogen data are so uncommon 

in the open literature that it is reasonable to accept the cost of overestimating uncertainty for the benefit 

of more accurately estimating the centers of the distributions specifically for hydrogen systems.  
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Figure 4. The final estimates for hoses in liquid hydrogen systems demonstrate a slightly increasing 

leak frequency with respect to leak size. This was also observed in results for liquid natural gas 

systems in Mulcahy et al. [3]. This trend may be explained by the sparsity of data or may reflect 

physical phenomenology that causes leaks in hoses to quickly expand compared to components. It is 

not clear which interpretation is appropriate; liquid hydrogen system data may shed light on this in the 

future. 

 

Figure 5. The final estimates for joints in liquid hydrogen systems demonstrate a similar trend of 

increasing leak frequency for large leaks as seen for hoses. As is the case for hoses, there is 

insufficient data and context to determine whether large leaks are truly more frequent than small leaks 

in joints, or whether this result is due to insufficient data.  

The data points from Data Sets 1 and 2 appear to be fairly interspersed for most of the components and 

leak sizes; that is, there does not appear to be a clear trend in which frequencies from one data set are 

always higher or lower than the other. One possible exception is for Pipes; as shown in Fig. 6, the 

frequencies from Data Set 2 (LNG) appear to generally be lower than the frequencies from Data Set 1 

(GH2). This type of trend can have two separate effects; first, the center (median) of the combined 



9 

distribution is likely to be different than the distributions for each of the data sets individually. Second, 

the uncertainty spread of the distribution is likely to be wider than for each of the data sets individually. 

It is not clear exactly why the leak frequencies are different for pipes and not for other components. 

Potential contributing causes are hydrogen embrittlement causing more leaks for GH2 and vacuum-

jacketed pipes leaking less often for cryogenic LNG. However, it is expected that other components 

would show similar trends if these are the only causes. This is a specific instance in which liquid 

hydrogen-specific data are likely to be especially informative, since the two proxy data sets appear to 

trend to different values.  

 

Figure 6. The final estimates for pipes demonstrate the expected trend with large leaks being less 

frequent than small leaks. These results appear consistent with the observed data and there is a 

sufficient quantity of data to conclude that the relationship is likely accurate.  

 

Figure 7. The final estimates for valves in liquid hydrogen systems reflect a similar trend as for pipes, 

though there is increasing variation in the leak frequency for larger leaks. This variation may be due to 

the gaseous hydrogen data, which included maximum likelihood estimates of 0 annual leaks for leaks 

with a fractional leak area of 1% or greater. Though these data are not plotted on the log scale, they are 



10 

included in the calibration and increase the spread in the final leak frequency distribution in both 

directions due to the normal distribution symmetry. 

 

Figure 8. The final estimates for vessels in liquid hydrogen systems demonstrate a similar trend of 

decreasing frequency with respect to leak size as the results for pipes and valves. As with those 

components, the data appear consistent with this trend and numerous enough to judge it reasonable. 

The long tails on these distributions are also the result of maximum likelihood estimates of 0 from the 

gaseous hydrogen data in prior analyses [1, 2].  

Statistics from the distributions plotted in Fig. 3 through Fig. 8 are included below in Table 2. Because 

the normal distribution is symmetrical about the log leak frequency, it is asymmetrical in linear space. 

This means that the arithmetic mean of samples from this distribution is likely biased towards the upper 

ends of the leak frequency distributions, whereas the median is a more appropriate representation of the 

center of each distribution. Hence, we provide the median rather than the mean.  
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Table 2. Statistics from the leak frequency distributions estimated for each component can be used in 

liquid hydrogen system risk assessment, though the accuracy of these estimates is difficult to judge 

without data from liquid hydrogen systems for validation (and improved calibration).  

Component 
Leak 

Size 
5th Median 95th Component 

Leak 

Size 
5th Median 95th 

Flange/ 

Gasket 

0.01% 1.6E-05 5.0E-05 1.4E-04 

Pipe 

0.01% 3.3E-07 3.4E-06 3.6E-05 

0.1% 3.1E-06 2.2E-05 1.8E-04 0.1% 1.4E-07 1.6E-06 2.0E-05 

1% 1.7E-07 1.1E-05 6.6E-04 1% 7.4E-08 8.0E-07 8.5E-06 

10% 3.3E-08 5.0E-06 6.9E-04 10% 3.5E-08 3.9E-07 4.2E-06 

100% 1.8E-08 2.4E-06 2.8E-04 100% 6.3E-09 1.9E-07 5.4E-06 

Hose 

0.01% 1.3E-05 1.1E-04 7.3E-04 

Valve 

0.01% 4.6E-05 1.2E-04 3.4E-04 

0.1% 5.7E-06 9.0E-05 4.3E-03 0.1% 8.8E-06 5.2E-05 3.2E-04 

1% 6.1E-08 1.2E-04 2.2E-01 1% 2.1E-06 2.2E-05 2.4E-04 

10% 3.1E-05 1.2E-04 4.9E-04 10% 3.3E-07 9.3E-06 2.5E-04 

100% 2.9E-07 1.3E-04 5.6E-02 100% 1.5E-07 3.9E-06 9.6E-05 

Joint 

0.01% 1.9E-05 9.0E-05 4.3E-04 

Vessel 

0.01% 4.3E-05 6.5E-04 1.3E-02 

0.1% 1.4E-05 1.2E-04 1.1E-03 0.1% 2.1E-06 1.4E-04 8.9E-03 

1% 2.2E-05 1.7E-04 1.3E-03 1% 9.6E-07 2.8E-05 8.1E-04 

10% 2.2E-06 2.4E-04 2.3E-02 10% 6.4E-08 5.7E-06 4.9E-04 

100% 2.6E-05 3.3E-04 3.3E-03 100% 6.8E-09 1.2E-06 2.0E-04 

 

CONCLUSIONS AND FUTURE WORK 

Liquid hydrogen leak frequencies have been estimated using a combination of proxy data for gaseous 

hydrogen and liquefied natural gas. This was done with a hierarchical model using a Bayesian update 

process with two data sets: one based on previous work for gaseous hydrogen and another based on 

previous work for liquefied natural gas.  

The distribution estimates for flanges, pipes, valves, and vessels are consistent with the intuition that 

systems are designed against large leaks (large leaks being more risk-significant), and so large leaks 

occur less frequently in industry experience than small leaks. However, the opposite trend is seen for 

hoses and joints; larger leaks are slightly more common than smaller leaks. It is not clear whether the 

increasing frequency of leaks relative to leak size for these components is a realistic result reflecting 

physical differences between these components and the others, or whether this result arises due to 

insufficient data. Neither conclusion can be drawn without additional data, so leak frequencies for these 

components should be used cautiously. 

The data points from both gaseous hydrogen and liquefied natural gas appear to be fairly interspersed 

for most of the components and leak sizes; that is, there does not appear to be a clear trend in which leak 

frequencies from one data set are always higher or lower than for the other. One possible exception is 

for pipes; the leak frequencies from the liquefied natural gas data set appear to generally be lower than 

the frequencies from the gaseous hydrogen data set. This affects both the center (median) of the 

estimated distribution, as well as increasing the uncertainty spread. This is a specific instance in which 

liquid hydrogen-specific data is likely to be especially informative, since the two proxy data sets appear 

to trend to different values. 

The most important future work to follow on this analysis is to update these distributions with liquid 

hydrogen-specific data. The data used in this analysis are proxy data meant to estimate the effects of 
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liquid hydrogen component leaks, but data from liquid hydrogen systems specifically would be much 

more accurate. The leak frequency distributions estimated in this analysis can be used as the priors and 

updated with the specific data in order to obtain the appropriate posterior distributions. However, not all 

components are included in this analysis; pumps, for example, were not included in the liquefied natural 

gas data set, and so were not included in this analysis. An alternative prior would need to be identified 

for these types of components.  

Another future study of interest would be to explore the hoses and joints components more closely. 

These components may have higher leak frequencies for larger leaks than smaller leaks due to a physical 

explanation, such as flexible hose material being much more likely to fail catastrophically rather than 

develop small leaks. It may also be better informed with more specific data. However, these types of 

components are also somewhat different than some of the other components considered. While a vessel 

or pipe may be in contact with liquid hydrogen for the entire operating year, other components may only 

come into contact with the liquid hydrogen periodically (such as during a transfer). Therefore, it may be 

more appropriate and informative to obtain additional data about transfers for these components, and 

estimate leak frequency distributions per transfer rather than per year of operation.  
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