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ABSTRACT 
Hydrogen is commonly used as feedstock in industrial processes and is regarded as a potential future 
energy carrier. However, its reactivity and low density make it difficult to handle and store safely. Indoor 
hydrogen dispersion can cause a fire or explosion hazard if encountering an ignition source. Safety 
practices often use time expensive modelling techniques to estimate risk associated with hydrogen. A 
neural network based surrogate model could efficiently replace Computational Fluid Dynamics (CFD) 
modelling in safety studies. To lower the dimensionality of this surrogate model, a dimensional analysis 
based on Buckingham’s Pi-theorem is proposed. The dimensional analysis examines stratified filling 
and highlights the functional parameters involved in the process. Stratified filling occurs for buoyancy 
dominated releases and is characterized by layers of decreasing concentration starting at the ceiling of 
the enclosure and developing towards the bottom. The study involves four dimensional cases that were 
simulated using Computational Fluid Dynamics (CFD) to demonstrate the usefulness of the proposed 
dimensionless time and dimensionless volume. The setup considered in this paper consists of a 
parallelepiped enclosure with standard atmospheric conditions, a single release source and one pressure 
outlet to ensure constant pressure during the release. The results of the CFD simulations show a distinct 
pattern in the relation of hydrogen molar fraction and dimensionless time. The pattern depends on the 
dimensionless height of the measurement location. A five-parameter logistic (5PL) function is proposed 
to fit the data from the CFD models. Overall, the paper provides insights into the functional parameters 
involved in the evolution of hydrogen mass fractions during stratified filling. It provides a non-
dimensional surrogate model to compute the evolution of the local concentrations of hydrogen during 
the development of stratification layers. 

NOMENCLATURE 

d – diameter 
E – energy 
F – force 
g – gravitational constant 
H – distance release source to ceiling 
h – height 

h* – dimensionless height 
l – number of dimensionless groups 
J – diffusion flux 

keff – effective conductivity 
m – number of dimensions 
n – number of functional parameters 
p – pressure 
Q – functional parameter 
r – radius 
R – net production rate 
r* – dimensionless radius 
S – rate of creation 
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t – time 
t* – dimensionless time 
V – total volume of the enclosure 
v – velocity 
V̇ – volumetric flow rate 
w – width 
x – x-coordinate 
Y – mass fraction 
y – y-coordinate 
z – z-coordinate 
P – dimensionless group 
t – stress tensor 
r – density 
cj – molar fraction of species j 

 
Subscripts 

a – air 
d – measurement location 

gc – gravity current 
h2 – hydrogen 
p – plume 
t – overturning 
0 – release source 

1. INTRODUCTION 

Hydrogen is commonly used as feedstock in various industrial processes and a potential future energy 
carrier. However, its reactivity and low density make it challenging to handle and store safely. In the 
event of a hydrogen release, the gas disperses rapidly creating a potential fire or explosion hazard if it 
encounters an ignition source. Therefore, indoor hydrogen dispersion is a significant safety concern for 
various applications including technical rooms, residential garages [1], workshops, and nuclear reactors 
[2]. A surrogate model representing time series of hydrogen mass fraction could improve safety 
engineering practices. This model can be used to optimize detector layout in closed spaces and determine 
the development of flammable volumes during a release. With the underlying aim of building such a 
model, this paper discusses stratified filling during plume-like hydrogen releases in semi-closed spaces. 
Previous experimental [1], [3], [4] and numerical studies [5], [6] have investigated indoor hydrogen 
releases in parallelepiped or cylindrical enclosures. A common temporal pattern is observed, which can 
be described by two main parameters: the instant at which the hydrogen concentration rises and the rate 
at which the concentration rises. Based on these studies, it is expected that a limited number of functional 
parameters determine this pattern. The number of variables have a large impact on the number of 
required samples to train a surrogate model. A dimensional analysis, leading to the use of relevant non-
dimensional parameters, can lower the number of variables, and reduce the impact of the curse of 
dimensionality [7]. In this paper a dimensional analysis, based on Buckingham’s Pi-theorem, is 
proposed to examine stratified filling and highlight the functional parameters involved in the process. 
The study involves four dimensional cases, that were simulated using Computational Fluid Dynamics 
(CFD), to demonstrate the usefulness of the proposed dimensionless time and dimensionless volume. 
Volumetric flow rate and total volume is varied across the models to examine the effects on molar 
fraction and time. The setup considered in this paper consists of a parallelepiped enclosure with standard 
atmospheric conditions. Pure hydrogen is released from a single release source. A ventilation hole in the 
floor is modelled to maintain atmospheric pressure in the room during the release. The outline of the 
paper is as follows: Firstly, the macroscopic features of plume-like releases of buoyant gases are 
explained. Following, a dimensional analysis is performed to describe the evolution of hydrogen mass 
fraction during the filling regime. Section 4 presents the properties of the CFD models that are used to 
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validate the dimensional analysis. Finally, the results of the CFD models are compared with the 
dimensional analysis and discussed. 

2. BACKGROUND 

In this section, the main features of plume-like releases of buoyant gases in semi-closed spaces are 
discussed. Fig. 1 visualizes a schematic representation of the situation. At first, an upward plume is 
formed from the orifice (Fig. 1, red). As the plume collides with the ceiling, the buoyant gas starts 
spreading outwards from the plume’s axis (Fig. 1, green). This flow is called a gravity current and due 
to buoyancy it happens close to the ceiling [8]. This outward movement is stopped by the walls, forcing 
the gas to a downward motion called overturning (Fig. 1, yellow). All this happens during the initial 
phase of the release. In the second phase, the gas starts filling the room from the ceiling down. 

 

Figure 1. Schematic representation of an indoor, plume-like release of a buoyant gas. Adapted 
from [9]. 

There has been extensive research about buoyant plume dynamics. Morton [8] provides a mathematical 
formulation for the distribution of flow rate, momentum, and buoyancy fluxes in plumes. The conical 
shape of the plume is a result of mixing with the surrounding air, thus increasing volumetric flow rate 
and radius. Based on this research, Kaye and Hunt [10] further developed these mathematical relations. 
The radius r! of the plume follows a linear relation with height h! from the orifice and entrainment 
coefficient α  [10]. The entrainment coefficient is constant for a given case but depends on the 
momentum at the orifice.  
A distinction is made between forced plumes, as studied in [8] and [10] and lazy plumes as introduced 
in another paper by Kaye and Hunt [11]. The gravity current and overturning has been discussed in [10] 
and [9]. Kaye and Hunt [10], experimentally determined a relation for thickness ℎ" of the developed 
gravity current. ℎ"  is a function of distance H. Following relation was published: ℎ" = 0.12 ⋅ H, or 
approximately H 8⁄ . Overturning was also discussed in [10]. The width of the overturning, 𝑤#, depends 
on the aspect ratio of the enclosure [10]. For small aspect ratios, it happens in the region with distance 
H from the wall. For large aspect ratios, the phenomenon reaches up to the plume’s axis. However, the 
assumption made in [10] is that the release is in the middle of the enclosure. In this study, the release 
location is variable throughout the complete domain. Thus, the development of the gravity current is 
also function of the location of the release source, relative to the wall. 
After the gravity current reaches the wall, the room starts filling with buoyant gas. Kaye and Hunt [10] 
introduced the filling box model. The main feature of this model is the stratification process where the 
room fills with layers of decreasing concentration. [12] and [13] discussed momentum dominated 
releases where more mixing is present. The result is a less pronounced stratification layer compared to 
the filling box model. Denisenko [14] calls this second model the fading up model. The volume 
Richardson number is used by [13]-[15] to define the filling regime based on the release characteristics. 
Overall, previous research provides detailed information on plume-like releases of buoyant gases. 
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However, the relations developed in these studies have complex formulations. These formulations give 
a good insight into the physics, but their formulations make them hard to understand and apply. In the 
following section, simple relations between the functional parameters are proposed using under the form 
of a non-dimensional surrogate model generated from CFD simulations, using Buckingham’s Pi-
theorem. Based on CFD simulations, the complexity of the relation is visualized in Section 5. 

3. DIMENSIONAL ANALYSIS 

To develop simple relations between the functional parameters of stratified filling in a semi-closed 
space, a dimensional analysis is performed. Buckingham’s Pi-theorem is an ideal candidate for this 
purpose. [16] states that: Suppose that a physical problem can be described using the following equation: 

𝑓(Q$, Q%, . . . , Q&) = 0, (1) 

where 𝑄'  are the functional parameters of the problem. if the n parameters 𝑄'  contain m primary 
dimensions, then 𝑙	(𝑛 − 𝑚) dimensionless groups can be constructed, such that the following relation 
holds between these dimensionless groups: 

𝜓(Π$, Π%, . . . , Π() = 0, (2) 

Each dimensionless group Π' is function of the original parameters. 

Π' = 𝑄$
)! ⋅ 𝑄%

)" ⋅ … ⋅ 𝑄&
)#, (3) 

In this study, a dimensionless analysis is developed for stratified filling of an enclosure during the release 
of a buoyant gas. Ten functional parameters are considered: Molar fraction of hydrogen =𝜒*"?, time (𝑡), 
volumetric flow rate =�̇�?, height of the release source (ℎ+), height of the measurement location (ℎ,), 
length (𝑙), width (𝑤), and height (ℎ) of the geometry, gas density (𝜌+), and air density (𝜌-). These 
functional parameters and their dimensions are summarized in Table 1. 

Table 1. Proposed functional parameters of stratified filling with their units. 

 𝜒*" 𝑡 �̇� ℎ+ ℎ, 𝑙 𝑤 ℎ 𝜌+ 𝜌- 
[m] 0 0 3 1 1 1 1 1 -3 -3 
[s] 0 1 1 0 0 0 0 0 0 0 
[kg] 0 0 0 0 0 0 0 0 1 1 

As a result, Equation (1) becomes: 

𝑓=𝜒*" , 𝑡, �̇�, ℎ+, ℎ,, 𝑙, 𝑤, ℎ, 𝜌+, 𝜌.? = 0, (4) 

Three (m) primary dimensions describe these ten (n) functional parameters; Hence, seven (𝑙) 
dimensionless groups can be constructed. Therefore, seven (𝑙) fundamental parameter must be chosen;	
𝜒*" , 𝑡, ℎ+, ℎ,, 𝑙, 𝑤, and 𝜌+ are used in this paper. The other three (𝑛 − 𝑙)	quantities are regarded as 
derived parameters. They are �̇�, ℎ, and 𝜌.. 

The dimensionless groups become, 

Π$ = �̇�+ ⋅ ℎ+ ⋅ 𝜌-+ ⋅ 𝜒/" = 𝜒/", (5) 

Π% = �̇�$ ⋅ ℎ01 ⋅ 𝜌-+ ⋅ 𝑡 =
2̇⋅5
/$

, (6) 

Π1 = �̇�+ ⋅ ℎ0$ ⋅ 𝜌-+ ⋅ ℎ+ =
/%
/

, (7) 
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Π6 = �̇�+ ⋅ ℎ0$ ⋅ 𝜌-+ ⋅ ℎ, =
/&
/

, (8) 

Π7 = �̇�+ ⋅ ℎ0$ ⋅ 𝜌-+ ⋅ 𝑙 =
(
/
, (9) 

Π8 = �̇�+ ⋅ ℎ0$ ⋅ 𝜌-+ ⋅ 𝑤 = 9
/

, (10) 

Π: = �̇�+ ⋅ ℎ+ ⋅ 𝜌-0$ ⋅ 𝜌+ =
;%
;'

, (11) 

Consequently, Equation (2) leads to Equation (12). 

𝜓 J𝜒*" ,
2̇⋅5
/$
, /&
/
, /%
/
, (
/
,9
/
, ;%
;'
K = 0, (12) 

For readability, following dimensionless parameters are defined. Firstly, the dimensionless height of the 
measurement location: 

ℎ,
∗ = /&

/
, (13) 

where ℎ= – vertical distance from the floor to the measurement location, m; h – height of the 
enclosure, m. Secondly, the dimensionless height of the orifice: 

ℎ+
∗ = /%

/
, (14) 

where ℎ+ – vertical distance from the floor to the orifice, m; h – height of the enclosure, m. Lastly, 
dimensionless time is defined: 

𝑡∗ = 2̇⋅5
2

, (15) 

Where V is the total volume of the enclosure. If 𝑙 ℎ⁄  and 𝑤 ℎ⁄  are constant, 𝑉 is proportional to ℎ1. As 
a result, 𝑡∗ is equivalent to 2̇⋅5

/$
. Based on these definitions, Equation (12) becomes: 

𝜓 J𝜒*" , 𝑡
∗, ℎ,

∗, ℎ+
∗, (
>
, (
/
, ;%
;'
K = 0, (16) 

This dimensional analysis is further used in Section 5 to derive a non-dimensional surrogate model able 
to predict the evolution of the concentration of hydrogen in the enclosure in filling regime. The model 
is based on the results of CFD simulations performed for four different, although similar, cases. 

4. CFD MODEL 

The four CFD simulations were performed using Ansys Fluent. This paper simplifies the problem and 
mainly focusses on the relation between 𝜒*" and 𝑡∗. The number of dimensions can therefore be reduced 
as follows.  All four cases have the same dimensionless coordinates J?

/
, @
/
, A
/
K of the release source 

J $
$+
, 07
$+
, 06
$+
K, (

/
 (2), and 9

/
 (1). As a result, the value for the dimensional height of the release source (ℎ+

∗) 

becomes $
$+

. The values of �̇� and 𝑉 are sampled using Latin Hypercube Sampling. In this paper, the 
dimensions of the geometry are limited from lab scale to the scale of a small technical room. In future 
work, the dimensions of the geometry will be enlarged to cover industrial applications as well. The 
release source is located out of center and close to the ground plane as shown in Fig. 2. This set up limits 
the influence of symmetrical flow features caused by the release of hydrogen. The main parameters of 
the four cases can be consulted in Table 2. In this study, no experimental data is available for model 
validation. Fig. 2 (a) shows a schematic representation of the geometry. The circular orifice is defined 
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by its diameter 𝑑+. The velocity at the orifice is fixed at 10 m/s and the volumetric flow rate is calculated 
with Equation (17); thus, varying 𝑑+ controls the volumetric flow rate of the release. 

�̇� = 𝜋 ⋅ J𝑑+ 2N K
%
, (17) 

where �̇� – volumetric flow rate, m3/s; 𝑑+ – orifice diameter, m. 

Table 2. Sampled values for volumetric flow rate �̇� and total volume 𝑉 using Latin Hypercube 
Sampling and the dimensionless groups that are fixed across all cases. 

Case �̇�	[m1 𝑠⁄ ] 𝑉	[m1] ℎ+
∗ 𝑙/ℎ 𝑤/ℎ 𝜌+ 𝜌-⁄  

1 0.021 9.809 1/10 2 1 0.0899/1.225 
2 0.061 3.195 1/10 2 1 0.0899/1.225 
3 0.077 12.622 1/10 2 1 0.0899/1.225 
4 0.034 4.737 1/10 2 1 0.0899/1.225 

The evolution of hydrogen mass fraction is monitored in 152 locations at eight different values of 
ℎ,

∗(ranging from 2/10 to 9/10 with intervals of 1/10), as illustrated in Fig 2 (b). Based on this data, 
it is possible to discuss the influence of ℎ,

∗in equation (16). The geometry is designed with one opening 
at the bottom to ensure constant pressure in the enclosure. The radius of this opening is fixed at 50 mm. 
Additionally, a cylindrical release pod (200 mm by 100 mm) was modelled. Hydrogen releases from a 
circular orifice on top of this pod. 

 

Figure 2. (a) Schematic representation of modelled geometry with release pod, orifice, and global 
coordinate system; (b) Grid of measurement locations, vertically oriented and normal to the orifice. 

The meshing parameters used in this study are based on the guidelines from the SUSANA project [17]. 
A mesh with a base size of 60 mm is adopted. However, a finer mesh is employed close to the orifice. 
Six inflation layers with a total thickness of 5 mm ensured better accuracy near the wall. The accuracy 
of the wall treatment was evaluated using Y+ values. 
The governing equations of the solver are the continuity equation, Navier-Stokes equation including 
gravitational forces, energy equation and species transport equation. The mass and momentum 
conservation equations are given by Equations (18) and (19): 

B;
B5
+ ∇ ⋅ (𝜌�⃗�) = 0, (18) 

where 𝜌 – density, kg m1⁄ ; 𝑡 – time, 𝑠; 𝑣 – velocity, m s⁄ . 

B(;DE⃗ )
B5

+ ∇ ⋅ (𝜌�⃗�𝑣) = −∇𝑝 + ∇�̿� + 𝜌�⃗� + �⃗�, (19) 

where 𝜌 – density, kg m1⁄ ; 𝑣 – velocity, m s⁄ ; 𝑡 – time, 𝑠; 𝑝 – pressure, kg m ⋅ s%⁄ ; 𝜏̿ – stress tensor, 
kg m ⋅ s%⁄ ; �⃗� – gravitational constant, m s%⁄ ; �⃗�, – external body force, kg ⋅ m% s%⁄ . 

(x0,y0,z0)

(0,0,0)

ℎ

" = 2 ⋅ ℎ

& = ℎ

(a) (b)
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The energy equation, as solved by Ansys Fluent is presented in Equation (20) [18]. 

B(;H)
B5

+ ∇ ⋅ =�⃗�(𝜌𝐸 + 𝑝)? = ∇ ⋅ =𝑘IJJ∇𝑇 − ∑ ℎK𝐽K + (�̿�IJJ ⋅ �⃗�)K ? + 𝑆*, (20) 

where 𝜌  – density, kg m1⁄ ; E – energy, kg ⋅ m% s%⁄ ; 𝑡  – time, 𝑠 ; 𝑣  – velocity, m s⁄ ; 𝑝  – pressure, 
kg m ⋅ s%⁄ ; keff – effective conductivity, kg ⋅ m s1 ⋅ K⁄ ; T– temperature, K; ℎK  – specific enthalpy of 
species j, m% s%⁄ ; 𝐽K– diffusion flux of species j, kg s ⋅ m%⁄ ; 𝜏̿ – stress tensor, kg m ⋅ s%⁄ ; 𝑆* – includes 
the heat of chemical reaction and any other volumetric heat sources that are defined. Finally, the species 
transport equation, given by Equation (21), predicts the local mass fraction of each species present in 
the flow [18]. 

BL;M(N
B5

+ ∇ ⋅ =𝜌�⃗�𝑌K? = −∇ ⋅ 𝐽K + 𝑅K + 𝑆K, (21) 

Where 𝜌 – density, kg m1⁄ ; Yj – mass fraction of species j, /; 𝑡 – time, 𝑠; 𝑣 – velocity, m s⁄ ; 𝐽K –diffusion 
flux of species j, kg s ⋅ m%⁄ ; 𝑅K – net production rate of species j by chemical reaction; 𝑆K – rate of 
creation by addition from the dispersed phase plus any user-defined sources. To set up the solver, the 
guidelines proposed in the SUSANA project [17] are followed. In the enclosure, both turbulent, 
transitional, and laminar regions are expected. Most Reynolds-Averaged Navier-Stokes (RANS) models 
assume fully turbulent flow. Therefore, three-dimensional RANS equations with Renormalization group 
(RNG) 𝜅 − 𝜖 model for closure were chosen as it can reproduce turbulent, transitional, and laminar flow. 

5. RESULTS & DISCUSSION 

In this section, the results of the CFD simulations are discussed and used to derive a non-dimensional 
surrogate model, able to predict the evolution of hydrogen mass fractions in the enclosure during a 
stratified filling regime. Fig. 3a depicts the time series of hydrogen mass fractions for the four simulated 
cases, across all 152 measurement locations, up to 100 seconds after the release onset. Two trends can 
be observed. The first trend is a steady increase in molar fraction from 0 to 1. The second trend is an 
abrupt rise to a molar fraction between 0 and 1, followed by a slower increase towards the asymptote. 
The latter trend is a superposition of the sudden development of the plume and the slower development 
of the stratification layer and is therefore mainly observed in the plume. In this paper, the effects in the 
plume are not further discussed, and the focus is on the evolution of the hydrogen mass fractions during 
stratified filling, far from the plume. The measurement points in the plume are excluded in further 
results, based on a linear relation developed by [8] and [10]. Fig. 1 (Section 2) schematically shows this 
relation between r!  and h! . A dimensionless radius 𝑟!∗ , based on these parameters, is presented in 
Equation (22), equivalent to the entrainment coefficient 𝛼 defined by [8] and [10]. 𝛼 is constant for a 
given plume according to [8] and [10] and is numerically defined using the vertical velocity profile near 
the plume. In non-dimensional terms, the plume is here roughly defined as that part of the domain where 
𝑟,∗ is less than 1 3⁄ . 

𝑟!∗ =
O)
/)

. (22) 

Fig. 3b plots the dimensional time series at locations where 𝑟,∗ is larger than 1 3⁄ , i.e., far from the 
plume. It confirms that the second trend, described above, is related to the rapid development of the 
plume. It also shows that the dimensional patterns largely depend on the modelled case. In a first, 
(dimensional) approach, the ratio �̇� 𝑉⁄  is used to explain the differences between the four cases. Table 
3 compares these ratios. It can be concluded that a larger ratio of �̇� 𝑉⁄  results in a steeper rise. Cases 3 
and 4 have similar values for �̇� 𝑉⁄ , and indeed show a similar pattern in their time series. A non-
dimensional approach is used in Fig. 3c, where results far from the plume are plotted as a function of 
the dimensionless group 𝑡∗ instead of time. All four models harmonize to a single pattern, illustrating 
the usefulness of a non-dimensional approach. As stated in Equation (12), the evolution of mass fractions 
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is also a function of relative height ℎ,
∗. For the large values of 𝑟,∗ considered here, it is expected that 

ℎ,
∗ plays a less significant role. 

 

Figure 3. Time series of molar fraction for all four cases. (a) Molar fraction as a function of time for 
all 152 measurement locations. (b) Molar fraction as a function of time for measurement location 

satisfying 𝑟,∗ > 1 3⁄ . (c) Molar fraction as function of 𝑡∗ for measurement locations satisfying 𝑟,∗ >
1 3⁄ . 

Table 3. Values for �̇� 𝑉⁄  for each case. 

Index �̇� 𝑉⁄  
1 0.002 
2 0.019 
3 0.006 
4 0.007 

Fig. 4 shows the evolution of mass fractions as a function of 𝑡∗ , for a specific value of the non-
dimensional height (2 10⁄ ). It confirms that the two variables in this paper, 𝑡∗ and ℎ,

∗, are useful to 
derive a surrogate model far from the plume (i.e., for 𝑟,∗ > 1/3), where 𝑟,∗ plays a limited role. In a first 
step towards a non-dimensional surrogate model, a curve fitting of the data for one specific value of ℎ,

∗ 
is performed. To accurately represent the data, the curve should exhibit following features: It should 
start with an initial molar fraction near 0 and approach 1 as 𝑡∗ advances; between these values, it should 
follow an S-shaped pattern, a sigmoid function. As the molar fraction rises rapidly from zero and 
approaches the asymptote gradually, the lower lobe of the curve should be smaller than the upper lobe. 
The most basic sigmoid function is the logistic function. A drawback of this function is its symmetrical 
shape, rendering it unsuitable to fit the dataset. To improve asymmetric accuracy, the five-parameter 
logistic (5PL) function is used. This function is used in bio-analytics as it provides good fitting for many 
biological processes [19]. The 5PL function is described by Equation (23). 

𝜒/"(𝑡
∗)=B+ P0Q

R$ST*
∗
,U

-
V
., (23) 

(a) (b)

(c)

SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4
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where A – lower asymptote; B – upper asymptote; C – horizontal location of the transition point; D – 
slope at the transition point; E – asymmetry of the curve. A 5PL curve is fitted to the data of Fig 4. Two 
values are predetermined: A is set to 0, and B is set to 1. The three remaining parameters can be consulted 
in Table 4. To evaluate the statistical quality of the fit, 𝑟%  is calculated and equals 0.997. Thus, 
statistically the relation in Equation (23) is an accurate non-dimensional surrogate model within the set 
boundaries. It should be noted that some essential information is lost in this model. Fig. 4 shows that 
the fit does not accurately represent the data for low values of 𝑡∗. As a result, the moment the molar 
fraction starts rising is not accurately modeled by this curve.  Although it is a limited region considering 
the whole curve, this region is very important for safety purposes as it contains the lower flammable 
limit of hydrogen at normal temperature and pressure.  Other functions presenting a slower rise for low 
values of t* should be investigated in future works. 

 

Figure 4. Molar fraction as a function of 𝑡∗ for ℎ,
∗ = 2 10⁄ . 

 

Fig. 5 shows the evolution of molar fractions as a function of both 𝑡∗ and ℎ,
∗. For different values of 

ℎ,
∗, the characteristic of the best-fit, one-dimensional 5PL curve should vary. However, In the frame of 

this work, a single 5PL curve was used to fit the whole dataset. The fitted parameters for Equation 23 
are shown in Table 4. The resulting value for 𝑟% is 0.982. The proposed fit is therefore an appropriate 
non-dimensional surrogate model for the data generated in this paper. 
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Figure 5. Molar fractions of hydrogen plotted as function of 𝑡∗ and ℎ,
∗. The plot contains two types of 

data. (1) Measurements at locations satisfying the condition 𝑟,∗ > 1 3⁄ . (2) Contour visualizing the fit 
based on Equation (23). 
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Table 4. Fitted parameters of the 5PL function for the one- and two-dimensional fit. 

 1D (ℎ,
∗ = 0.2) 2D (ℎ,

∗ = 0.2 − 0.9) 
A 0 0 
B 1 1 
C 8.76 70.7 
D 1.69 1.06 
E 1.79 13.3 

To increase the accuracy of this three dimensional surrogate model, the values of C, D, and E should 
ideally be functions of ℎ,

∗ . As stated in Section 4, this paper did not include all dimensionless 
parameters from equation (16). In future works, a multi-dimensional alternative of Equation (23) should 
therefore be proposed, including all dimensionless parameters from Equation (16): 

 𝜒/"(𝑡
∗, ℎ,

∗)=B+ P0Q

W$SX *∗

,/0&
∗,0%

∗, 23, 204
Y
-/0&

∗,0%
∗, 23, 204

Z

./0&
∗,0%

∗, 23, 204
, (24) 

where A – lower asymptote; B – upper asymptote; C – horizontal location of the transition point; D – 
slope at the transition point; E – asymmetry of the curve. The values for A and B should be 0 and 1 
respectively, whereas the values of C, D and E are now function of ℎ,

∗, ℎ+
∗, (
>

 and (
/
. 

6. CONCLUSION 

In this paper, the evolution of local concentrations of hydrogen due to stratified filling in a semi-closed 
space after plume-like releases was investigated, with the purpose of developing a non-dimensional 
surrogate model to predict this evolution far from the plume as a function of the volume of the geometry 
and the volumetric flow rate of the release. The proposed surrogate model is derived from results of 
CFD simulations performed for four different, though similar, dimensional cases. The surrogate model 
is based on a 5PL sigmoid function and used to predict the evolution of molar fraction of hydrogen as a 
function of a non-dimensional time and a non-dimensional height. The influence of the non-dimensional 
distance from the plume 𝑟,∗ was found to be less relevant and was not considered in this study. The 
proposed model shows a very good statistical accuracy. Therefore, it can be used to assess the local 
evolution of hydrogen mass fraction in all similar, dimensional applications. For safety purposes the 
model’s fit should be improved to gain better accuracy near the lower flammability limit of hydrogen. 
The surrogate should also be extended based on a new set of dimensional cases to account for the whole 
set of non-dimensional parameters proposed in the analysis. The results show the relevance of 
dimensional analysis for the study of typical hydrogen leakage cases and the development of adequate 
surrogate models. In turn, they can be used to cover many dimensional, full-scale applications, and solve 
optimization problems in an efficient way. They will also ease the use of Uncertainty Quantification for 
robust optimization. 

7. FUTURE WORK 

In future works, more sophisticated functions will be tested for both two- and multi-dimensional fits, to 
further increase the accuracy of the surrogate model, especially at lower values of t*. Secondly, the 
model parameters will be further expanded to cover the dimensionless groups proposed in the analysis. 
To achieve this, a new set of samples will be selected with varying values of all significant dimensionless 
parameters. Further, Uncertainty Quantification can be used to cover a broader range of cases with 
slightly varying parameters. Lastly, as this paper only discussed stratified filling far from the plume, the 
surrogate model will be extended to cover the evolution of molar fraction closer to, and in the plume. 
To do so, the relevance/impact of 𝑟,∗ in this dimensional analysis will be thoroughly studied. On the 
longer term, the results from this paper can be used to train more complex surrogate models. Such a 
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surrogate model can then be implemented in risk optimization schemes that usually require many time-
consuming CFD simulations. 
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