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ABSTRACT
Historically, it has been a challenge to simulate the experimentally observed cellular structures and
marginal behavior of multidimensional hydrogen-oxygen detonations in the presence of losses, even
with detailed chemistry models. Very recently, a quasi-two-dimensional inviscid approach was pursued
where losses due to viscous boundary layers were modeled by the inclusion of an equivalent mass diver-
gence in the lateral direction using Fay’s source term formulation with Mirels’ compressible boundary
layer solutions. The same approach was used for this study along with the inclusion of thermally perfect
detailed chemistry in order to capture the correct ignition sensitivity of the gas to dynamic changes in
the thermodynamic state behind the detonation front. In addition, the strength of transverse waves and
their impact on the detonation front was investigated. Here, the detailed San Diego mechanism was
applied and it has been found that the detonation cell sizes can be accurately predicted without the need
to prescribe specific parameters for the combustion model. For marginal cases, where the detonation
waves approach their failure limit, quasi-stable mode behavior was observed where the number of trans-
verse waves monotonically decreased to a single strong wave over a long enough distance. The strong
transverse waves were also found to be slightly weaker than the detonation front, indicating that they are
not overdriven, in agreement with recent studies.

1. INTRODUCTION

This study seeks to use a novel numerical simulation methodology to better understand marginal deto-
nation behavior in thin planar channels. In particular, the study aims to investigate the nature of strong
transverse reaction waves at the critical near-failure limit, a regime that is characteristic of having large
transient pressure spikes. Early experiments investigating marginal detonation were conducted using
small round tubes and low quiescent pressures, which approached the quenching limit below which det-
onations fail to propagate. Such limiting detonation waves were found to exhibit unique behaviors that
were described as both spinning and galloping [1–3]. The galloping behavior, which can occur in both
round tubes and rectangular (planar) channels, can be described as a phenomenon where the forward
incident wave speed becomes periodically overdriven, as high as 1.5 times the theoretical Chapman-
Jouguet (CJ) velocity, but then degenerates to a velocity well below this theoretical value for most of the
cycle [4]. This extreme velocity change is also typically accompanied by a monotonic degeneration of
the number of transverse waves [5]. The fundamental difference between marginal detonations in round
tubes and rectangular planar channels is that marginal detonations in tubes were found to include a con-
tinually spinning transverse detonation component [6], while marginal planar detonations were found to



intermittently exhibit transverse detonations only at the beginning of each cycle [7]. These transverse
detonations were found to trigger ignition perpendicular to the mean flow [6–9], and are believed to be
key features permitting sustenance of the detonation wave propagation in critical limiting conditions.
While it is known that excess inert gas dilution can stabilize certain reactive mixtures and suppress gal-
loping behavior [4], the exact conditions that permit intermittent strong reactive transverse waves are not
well understood, and are difficult to predict. In addition, it is unknown whether such transverse waves
are actually overdriven with respect to the the mixture through which they propagate, or not.

To date, most of the multi-dimensional simulations of hydrogen detonation waves in thin channels rely
on solving the reactive Euler flow equations with the simple one-step global Arrhenius reaction kinet-
ics. This is presumably due to the prohibitive computational cost of resolving the full three-dimensional
flow field using the Navier-Stokes equations. However, extensive numerical simulation efforts [10, 11]
have shown that the simulated detonation cells tend to be smaller than those measured experimentally
from narrow channels. To clarify such inconsistency between numerics and experiments in terms of
detonation cell sizes, one school of thought [11–13] points out the potentially significant role of de-
tailed chemistry and the non-equilibrium effects. On the other hand, Xiao and Weng [14] have explicitly
demonstrated the effect of losses on detonation cell sizes, particularly near the propagation limit, due
to the significantly increased detonation velocity deficits resulting in the notably lengthened detonation
reaction zones. Such detonation characteristic length scale dependence on losses has also been shown
earlier by Radulescu et al. [15, 16] in their slowly diverging channel experiments, which follows the
exponential relationship governed by the mixture’s effective activation energy. Furthermore, to account
for the presence of losses, Xiao et al. [17] proposed to model the effect of boundary layers on argon-
diluted hydrogen-oxygen detonations propagating in thin channels, by including an equivalent mass
divergence in the lateral direction, akin to Fay’s methodology of modeling boundary layer losses [18].
In their model, the Mirels’ compressible laminar boundary layer theory [19] was adopted for quantify-
ing the boundary-layer-induced loss and such formulation has been shown to excellently reproduce the
cellular dynamics observed experimentally across a range of initial mixture pressures. However, their
simulations employed a simplified perfect gas two-step combustion modeling approach, and thus did not
contain the non-equilibrium effects and ignition sensitivity to the shocked gas that is believed necessary
to correctly model transverse detonations at near-critical detonation limits [20]. As a result, the two-step
approach required specific tuning of model parameters for each set of initial conditions, and was not
able to properly capture the thermodynamic state in the shocked gas or combusted products, nor capture
transverse detonations at the most critical near-failure propagation limits.

Therefore, the current study aims to extend the quasi-two-dimensional approach of Xiao et al. [17]
to include detailed chemistry, in order to accurately model both the effects of boundary layers and the
reaction phenomena leading to transverse reactive waves and their resulting cellular structures. The
approach is first validated for diluted mixtures of the previous investigation (2H2 + O2 + 7Ar), and then
extended to marginal conditions of a less diluted mixture and lower pressure, 2H2 +O2 +2Ar at 2.1 kPa.

2. NUMERICAL MODELING APPROACH

2.1. Governing Equations

In the approach adopted here, the two-dimensional thin-channel detonation flow fields are modeled us-
ing the inviscid Euler equations, which account for the conservation of mass, momentum, total energy,
and ith chemical species. In order to account for the presence of boundary layers in the lateral direction,
in the Euler framework, source terms in the form of 1

A
DA
Dt were included to model the equivalent mass

divergence that would result from the displacement of streamlines in the boundary layer, and their asso-
ciated equivalent hypothetical rate of area increase. The governing equations [21] in the presence of this
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area increase are thus given by

∂ρ

∂t
+ ∇ · (ρu) = −ρ

1
A

DA
Dt

(1)

∂(ρu)
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+ ∇ · (ρu ⊗ u) + ∇p = −ρu
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(2)

∂(ρE)
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)
= −(ρE + p)
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(3)

∂(ρYi)
∂t
+ ∇ · (ρuYi) = −ρYi

1
A

DA
Dt
+ ω̇i. (4)

Here, ρ, u, A, p, Yi, and ω̇i, refer to the density, velocity vector, channel cross-sectional area, pressure,
mass fraction of the ith species, and the reaction rate of the ith species, respectively. The total specific
energy, E, is defined as

E =
∑

(Yihi) −
p
ρ
+

1
2
|u|2, (5)

where hi is the enthalpy of the ith species. The ideal gas law is used as the equation of state with its
corresponding equation for the chemically frozen speed of sound, c, given below as

p = ρRT, (6)

c2 = γp/ρ, (7)

where γ is the specific heat ratio. The specific heat capacities and enthalpies were calculated using the
temperature-dependent, 7-coefficient NASA polynomial approximations [22]. As the channel height is
larger than the width by more than an order of magnitude, boundary layer effects on the top and bottom
of the channel could be considered negligible for this study.

Using a shock-attached reference frame with a quasi-steady-state assumption, and inserting an expres-
sion for the displacement thickness from Mirels’ compressible laminar boundary layer solutions [19] to
Fay’s boundary layer theory [18], the source term can finally be reduced to

1
A

DA
Dt
≈

KM

w

√
νs

t − ts
, (8)

where KM is Mirels’ constant, w is the physical channel width, νs is the post-shock kinematic viscosity,
and t − ts is the elapsed time since a Lagrangian particle has passed through the shock front. The shock
time is effectively recorded when the shock passes over the quiescent gas, the moment when P > 2P0.
In our conservative framework, we let

∂(ρts)
∂t
+ ∇ · (ρuts) = −ρts

1
A

DA
Dt
, (9)

which is mathematically equivalent to permitting advection of the particle shock time through

∂ts

∂t
+ u · ∇ts = 0. (10)
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2.2. Solution Methods

The source terms in the conservation Eqs. (1) to (4) and (9) require three inputs for each set of initial
conditions as shown in Eq. (8). The geometric channel width w is fixed, and the post-shock kinematic
viscosity is calculated for the CJ state using Cantera [23] and SDToolbox [24]. Note that this value is
marginally different from the actual post-shock kinematic viscosity of a shock with a velocity deficit, but
the latter value cannot be determined theoretically as the velocity deficit is not known a priori. The only
remaining unknown is Mirels’ constant, KM. For this study, theoretical values were calculated using the
same procedure as from Xiao et. al [16] using the CJ speeds given by the detailed San Diego mechanism.
KM ≈ 4 for all pressures considered where the mixture was 2H2 + O2 + 7Ar.

The detailed San Diego combustion mechanism [25] implemented includes 8 reacting species (H2, O2,
H, O, OH, HO2, H2O2, and H2O), an inert species (Ar), and 23 reversible, elementary reactions when
only considering hydrogen oxidation.

The governing equations, Eqs. (1) to (4), were solved using the second-order HLLC method [21] with the
van Albada slope limiter [26]. The Sundials CVODE solver [27] was used to implicitly solve a constant-
volume combustion reaction in each cell for time-marching, and a Zel’dovich–von Neumann–Döring
(ZND) reaction for solution initialization. Adaptive mesh refinement [28] was used near shocks and in
reaction zones by refining in regions with large density gradients and high concentrations of radicals
to allow lower mesh resolution in the rest of the domain. The domain was meshed with the same grid
spacing in the x and y directions with up to seven levels of adaptive mesh refinement down to a minimum
specified resolution. Four different minimum grid resolutions of 390.6, 195.3, 97.7, and 48.8 µm (later
abbreviated to 391, 195, 98, and 49 µm for brevity) were used for this study. Depending on the initial
pressure, these resolutions correspond to resolving 5 to 148 grids per induction length acquired through
ZND solutions corresponding to waves computed at their velocity deficit. As inviscid simulations are
known to qualitatively vary with resolution due to differences in numerical diffusion [20, 29], a resolution
study was done for each pressure with a minimum of at least 20 grids per induction length reached based
on the recommendations of previous studies [30, 31].

2.3. Domain, and Initial and Boundary Conditions

The computational domain used for this study was in the reference frame of the detonation front to
reduce computational expenses. The computational length was 1.5 m, but the total effective distance
covered by the detonation wave depended on the number of time steps, and was up to 15 m for lower
initial pressures where the detonation front needed longer to settle to a quasi-steady state. Early compar-
isons were made with the absolute reference frame to ensure both approaches gave the same result. For
two-dimensional simulations, the domain height was 200 mm to match the experimental domain [17].
The right bound was given a constant inflow boundary condition approximately equal to the average
experimental wave speed to allow the detonation front to stay within the domain, while the left bound-
ary was given a zero gradient boundary condition and was sufficiently far from the detonation front to
prevent influencing the detonation dynamics as shown in Figure 1. The top and bottom bounds were
given symmetry boundary conditions, and boundary layer effects were included via source terms for a
19 mm channel width in the third dimension.

The quiescent fluid at x > 0 was given a constant temperature of T0 = 300 K and an initial pressure
P0, with the exception of the first four induction lengths (∆i), which were prescribed random density
perturbations up to ±25% to encourage detonation cell formation. The domain at x ≤ 0 was initialized
with two different ZND solutions. From 0 to -0.25 m, a ZND structure was initialized corresponding
to the CJ velocity with an overdrive ranging from 1.2 to 1.7 in order to overcome the typical startup
errors that may arise due to the sharp discontinuity in the initial solution at x = 0. From -0.25 to -0.5

4



0.0 m-0.5 m -0.25 m 1.0 m
0.0 m

0.2 m

y

x�i=4

Inflow and Overdriven ZND Solutions

Zero

Gradient
Symmetry InflowDensity

Perturbations

Figure 1: Computational domain in the detonation front wave reference frame.

m, a ZND structure corresponding to the inflow velocity was initialized. This discontinuity at -0.25 m
allowed for an expansion wave to propagate towards the detonation front in order to allow it to settle to
its quasi-steady speed more quickly.

Five initial pressures were investigated for this study with corresponding CJ velocities, experimental
deficit velocities, induction lengths calculated from Cantera [23] and SDToolbox [24], and grids per
induction length shown in Table 1. Data points were saved every 20 µs. All velocity deficit calculations
were made by calculating the mean velocity of at least 100 data points along the bottom wall once the
detonation wave had reached quasi-steady conditions to ensure enough detonation wave cycles were
captured.

Table 1: Theoretical CJ velocity, experimental velocity with deficit [14, 17], induction length, and grids
per induction length for each initial pressure and mixture at T0 = 300 K. The induction lengths

correspond to the ZND structure calculated for the deficit velocities rather than the CJ velocities.

Grids per Induction Length
P0 (kPa) Mixture DCJ (m/s) Ddef (m/s) Lind mm 391µm 195µm 98µm 49µm

2.1 2H2 + O2 + 2Ar 1891.3 1569.8 19.02 48.7 97.4 N/A N/A
3.1 2H2 + O2 + 7Ar 1593.9 1211.4 33.52 85.8 N/A N/A N/A
4.1 2H2 + O2 + 7Ar 1601.9 1329.5 14.40 36.9 73.7 147.5 N/A
6.9 2H2 + O2 + 7Ar 1616.6 1422.6 4.72 12.1 24.2 48.4 96.7
10.3 2H2 + O2 + 7Ar 1628.0 1497.8 2.05 5.2 10.5 21.0 42.0

3. RESULTS AND DISCUSSION

3.1. Theoretical and Tuned KM Values

The theoretical values for KM were calculated for each reactive mixture using the frozen shock state of
the mixture with variable heat capacities according to the procedure by Xiao and Radulescu [16]. These
values were KM ≈ 4 for all of the pressures with the 2H2+O2+7Ar mixture and KM = 4.32 for P0 = 2.1
kPa with the less diluted 2H2 +O2 + 2Ar mixture. Exact values are given below in Table 2. Using these
values, a one-dimensional resolution study was completed comparing the velocity deficit for all four
resolutions with a maximum error of 0.75% between 390.6 and 48.8 µm being recorded for the three
highest initial pressures as seen below in Figure 2. Although the velocity deficits were essentially grid
independent, they did not match the experimental velocity deficits from Xiao et al. [17]. In addition,
detonations at P0 = 4.1 kPa could only be averaged for a few cell cycles before they ultimately failed
which limited the accuracy of the deficit calculation at that pressure. At 2.1 and 3.1 kPa, detonations
could not be sustained at all.

To better match experiments, a parametric study was done in two-dimensional simulations to tune the
values of KM to yield the correct velocity deficits as was done previously for the two-step modeling
approach in the study by Xiao et al. [17]. Figure 2 shows the results of these values being tuned to
within 1% of experiments at 97.7 µm with the final tuned KM values being seen in Table 2 alongside the
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tuned values of the prior two-step approach. Note that KM for P0 = 2.1 kPa had not converged through
195.3 µm and the proper velocity deficit for P0 = 3.1 kPa at 195.3 µm could not be reached without the
detonation failing.
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Figure 2: Resolution study of the velocity deficit for KM ≈ 4 compared to experiments [14, 17]. Note
that detonations at P0 = 3.1 and 2.1 kPa failed completely, and at 4.1 kPa failed after a few cell cycles.

Also includes velocity deficits for tuned values of KM.

Table 2: Theoretical and tuned Mirels’ constants for two-step [17] and detailed chemistry.
∗ Only at 195.3 µm. † Only at 390.6 µm

KM Values
P0 (kPa) Theoretical Tuned: Two-Step Chemistry Tuned: Detailed Chemistry

2.1 4.32 N/A 4.10∗

3.1 3.98 N/A 3.70†

4.1 3.99 1.75 3.90
6.9 4.01 2.50 5.20

10.3 4.03 2.50 6.02

It can be seen that the tuned KM values tend to increase for increasing initial pressures for a given mix-
ture and have values for detailed chemistry much higher than for the two-step chemistry approach, a
discrepancy which can only be attributed to the different reaction kinetics and thermodynamic proper-
ties applied. The values match reasonably well for detailed chemistry at P0 = 2.1, 3.1, and 4.1 kPa. The
cause of the larger error between the KM values at 6.9 and 10.3 kPa is unknown, but could be due to
ignoring conduction at the walls or to neglecting 3D effects which are more significant when the deto-
nation cell sizes approach the channel thickness. These 3D effects would be more evidently pronounced
for 6.9 and 10.3 kPa as the ratio of cell size to the channel width is less than 10 [32] allowing transverse
waves to propagate in the third dimension. Xiao et al. also surmised that the assumptions of a quasi-
steady shock and the use of analytical solutions to the boundary layers could be to blame for the errors
in KM [17].

3.2. Grid Resolution Effects on the Two-Dimensional Flow Fields

As seen in Table 3, the numerical velocity deficit is essentially resolution independent and matches
experimental values well when using tuned KM values for P0 = 4.1 through 10.3 kPa, for the moderately
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diluted mixture (2H2 + O2 + 7Ar). As noted previously, the KM values for the P0 = 2.1 and 3.1 kPa
cases display a lack of resolution independence where the deficit velocity decreases or the detonation
even fails at finer resolutions. This is possibly due to the greater dependence of the detonation front on
the transverse waves for those pressures. This study also sought to see if the corresponding experimental
detonation cell sizes could be predicted. Numerical schlieren images were extracted from the simulations
from the density gradient and were compared to experimental schlieren images from two studies led by
Xiao [14, 17] as seen in Figure 3. Cell size can be seen in Table 3 and was estimated from the finest
resolution cases available for each initial pressure by the formula λ = H

0.5∗N where H is the channel
height and N is the number of triple points counted in the channel.
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Figure 3: Experimental (left column) [14, 17] vs numerical schlieren for finest resolution (middle
column) and next finest resolution (right column) for the five initial pressures with tuned KM values.

Overall, it was found that when the experimental velocity deficit was matched using the tuned KM

values, the cellular structures could also be accurately predicted with resolutions fine enough to achieve
grid independence as seen in the right two columns of Figure 3. As expected, the higher pressures
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Table 3: Velocity deficits and cell sizes (mm) for each resolution (µm) for experiments [14, 17] vs
two-dimensional simulations using the tuned KM values. * For KM = 4.20

P0 D/DCJ Cell Size λ (mm)
(kPa) Exp. 391µm 195µm 98µm 49µm Exp. 391µm 195µm 98µm 49µm
2.1 0.83 0.829∗ 0.826 N/A N/A ∼203 203∼406 203∼406 N/A N/A
3.1 0.76 0.765 N/A N/A N/A ∼406 ∼406 N/A N/A N/A
4.1 0.83 0.829 0.832 0.831 N/A ∼203 203∼406 203∼406 203∼406 N/A
6.9 0.88 0.890 0.886 0.883 0.884 68∼81 41∼51 68∼102 68∼102 68∼102
10.3 0.92 0.927 0.923 0.925 0.923 31∼41 0 23∼25 37∼41 37∼41

needed finer resolutions to accurately resolve the hydrodynamic structures and settle to the correct cell
size due to the shorter induction lengths. It should be noted that most simulations in Table 3 have a range
of cell sizes. This is due to both the long distance needed for transverse waves to decay to quasi-steady-
state, and in certain cases the existence of more than one quasi-stable mode where a certain number of
transverse waves would exist for a few cycles before degenerating into a lower number of transverse
waves. Such behavior was not widely observed in the experiments as schlieren images were only taken
at a single location within the 3.4 m channel and so any quasi-stable modes existing before or after the
observation window were missed. In contrast, the simulations permitted a propagation distance of up to
15 m, which allowed the progression through multiple modes, and enabled investigation of the change
in transverse wave dynamics as the modes degenerated towards a single transverse wave.

3.3. The Marginal Detonation Behavior

Having captured the correct experimental velocity deficit and cellular structure behavior, attention was
turned towards potential marginal behavior for the P0 = 2.1, 3.1, and 4.1 kPa cases, which were all close
to the detonation failure limits. For 2.1 and 4.1 kPa, instabilities and asymmetries led to the occasional
formation of strong transverse waves that were strongly coupled to the reaction zone. The 3.1 kPa case,
though seemingly closer to the detonation limit than the 4.1 kPa case, did not display similar behavior.
In Figure 4 below for 2.1 kPa at 390.6 µm it can be seen that a seemingly stable mode of two transverse
waves can spontaneously transform into a single transverse wave mode with strong coupling between the
shock wave and the reaction zone. The top transverse wave in frame a) can be seen gradually decaying
in frames b) through d) before it completely disappears by frame e) once the stronger transverse wave
has overtaken it. This behavior is similar to the description of quasi-steady galloping waves given by
Vasil’ev [5], with the key difference being that no complete quenching and re-initiation characteristic
of true galloping was observed in this study. This assessment agrees with experimental evidence which
indicates that highly argon-diluted hydrogen mixtures do not exhibit a true galloping behavior [4].

a) t=2.32 ms b) t=2.38 ms c) t=2.46 ms d) t=2.50 ms e) t=2.56 ms
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Figure 4: Numerical schlieren at 2.1 kPa with KM=4.20 at 390.6 µm for gradual transition from a) two
transverse waves to e) one strong transverse wave. Direction of transverse waves noted with red arrows.

The spontaneous creation of a strong transverse wave also seems to be somewhat dependent on reso-
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lution. For 4.1 kPa, the transition from two waves to one occurred at 15.2, 10.4, and 9.6 m down the
channel respectively for 390.6, 195.3, and 97.7 µm resolutions, although the second wave reappeared
after one cycle for the 390.6 µm case. We note here, that no such transition was observed in the experi-
ments, which were only visualized within a 3.4 m long channel. The decrease in numerical diffusion or
the increased number of initial density perturbations could both be potential causes of the faster transi-
tions from two transverse waves to one seen at finer resolutions. Physically, it is possible that both the
boundary layer losses and asymmetry between the two transverse wave speeds allowed for the stronger
wave to overtake the weaker wave, and played a role in this eventual mode degeneration.

The evidence of these strong transverse waves can also be seen in Figure 5a where the velocity of the
detonation front can be seen varying from 151% to 71% of the average velocity for P0 = 2.1 kPa in
comparison to only 117% to 90% for 10.3 kPa. This trend is also visible for non-dimensional over-
pressure in Figure 5b where 2.1 kPa exhibits over-pressures up to P−P0

P0
=146 in the later part of the plot

where the single wave mode has formed, in comparison to maximum over-pressures of up to 96 for the
P0 = 10.3 kPa case.
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Figure 5: Time histories along the channel bottom wall for 2H2 + O2 + 2Ar at 2.1 kPa, 195.3 µm and
2H2 + O2 + 7Ar at 10.3 kPa, 48.8 µm.

Figure 6 compares the differences in initial pressures and mixtures by showing the averages of all the
over-pressure maximums for the over-pressure time histories. In general, the average and the standard
deviation of over-pressure maximums display an increasing trend as the initial pressure decreases, but
the P0 = 3.1 kPa case clearly seems to be an outlier. The cause of this discrepancy is unknown, but
may be due to the fact that the 3.1 kPa case never displays the quasi-stable two wave to one wave
mode degeneration suggesting that some sort of coupling between the two waves may occur during the
formation of one strong wave. Since the value of KM at 3.1 kPa could not be successfully converged with
increasing resolution due to failing detonations, it is also possible that too much numerical diffusion is
artificially stabilizing the detonation and preventing true marginal behavior from occurring. In addition
to pressure trends, the clearest marginal behavior was found to exist for the less diluted case at P0 = 2.1
kPa (2H2 + O2 + 2Ar) which had the largest over-pressure maximum and standard deviation.

Measurements were also made to compare the strength of transverse waves to that of the detonation
front for the three lowest initial pressures. The triple point attached to the transverse wave was chosen
as the measurement location as it is well-defined in space and is representative of the transverse wave
speed. The velocity vector of the triple point was first calculated from position data across time steps
using a 1st order central difference approximation. A rectangular portion of the unburned, shocked gas
directly in front of the wave was then sampled to find the mass-weighted-averaged velocity vector and
temperature, and the ensemble-averaged pressure for that region as per the procedure given by Floring
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Figure 6: Non-dimensional over-pressure maximum averages with the error bar indicating the standard
deviation. Trend line is for cases corresponding to the 2H2 + O2 + 7Ar mixture

et al. [20]. Each rectangle contained a range of 6,600 to 64,000 grid points depending on the size of the
transverse wave and the resolution of each specific case. The CJ velocity was found using these values
of the averaged pressure and temperature, and the unburned composition. The velocity vector of the
unburned gas was then subtracted from the velocity vector of the triple point as seen in Figure 7a to find
the velocity of the triple point relative to the unburned gas. Finally, this relative velocity was divided by
the CJ velocity of the unburned gas to find the strength of the transverse wave.

The resulting transverse wave strengths for P0 = 2.1, 3.1, and 4.1 kPa can be seen in Figure 7b through
Figure 7d. Several wave cycles are included for each quasi-stable mode with two and one wave modes
being captured for 2.1 and 4.1 kPa. In general, it was found that the transverse waves travel at or
below the deficit velocity of the detonation front. Therefore, the transverse waves are found not to be
overdriven. However, the transverse wave in the one wave mode was found to be somewhat stronger
than in the two wave mode. For the 2.1 kPa case, the mean value of D

DCJ
for the transverse waves for

the one and two wave modes were 0.75 and 0.69, respectively, in comparison to the detonation front
which showed a value of 0.86. The 3.1 and 4.1 kPa cases displayed similar trends. Notably, for all
three initial pressures, the transverse wave mean strengths were all approximately 12% lower than the
detonation front strengths for the one transverse wave mode, and all approximately 19% lower for the
two transverse wave mode.

Two recent numerical studies, which included no losses, investigated the role of transverse waves in
critical hydrocarbon detonation re-initiation due to diffraction [33] and interaction with an obstacle [20].
Both studies performed the same transverse wave strength calculation as done above and concluded that
the transverse waves traveled at the CJ velocity with respect to the shocked, unburned gases following
the detonation front. This conclusion indicated that the transverse waves traveled with less strength than
the overdriven detonation fronts. This is consistent with the findings in the current study.

4. CONCLUSIONS

This study determined that for detailed chemistry, Fay’s source term formulation is able to accurately
predict the cellular structure provided that Mirels’ constant KM is slightly tuned to match the experi-
mental velocity deficit. In general, KM seemed to require less tuning for detailed chemistry than for
simplified two-step chemistry. For P0 = 2.1 kPa, the tuned value of KM was found to decrease with
resolution while the detonation for the 3.1 kPa case could not be sustained at resolutions finer than 390.6
µm. Both effects are possibly due to decreasing numerical diffusion with finer resolutions.

For marginal detonations, two-dimensional simulations were found to sustain detonations at higher KM

values than one-dimensional simulations indicating that transverse waves play a major role in stabilizing
the detonation front. In addition, strong transverse waves tightly coupled to the reaction zone with large
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Figure 7: Detonation front and transverse wave velocity calculations.

over-pressures were sometimes able to form when the number of transverse waves degenerated from
two to one. The average and standard deviation of the maximum over-pressures were in general found
to increase as the initial pressure and the argon dilution decreased. The P0 = 3.1 kPa case was an
exception to this trend possibly indicating that more than one wave mode is required to produce large
over-pressures. However, the detonations for this case also failed at finer resolutions possibly due to
reduced numerical diffusion. Further investigations are likely required, and may need to explicitly model
diffusion and examine more transverse wave cycles.

Lastly, the strength of these strong transverse waves was found to be slightly less than the detonation
front, even for the single wave mode, indicating that the transverse waves are not overdriven. This result
matches the findings of recent studies investigating detonation re-initiation. In addition, the transverse
wave strength was found to be higher for the one wave mode than for the two wave mode.
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