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ABSTRACT 

Gas leak detection on a production site is a major challenge for the safety and health of workers, for 

environmental considerations and from an economic point of view. In addition, flammable gas leaks are 

a safety risk because if ignited, they can cause serious fires or explosions. For these reasons, Acoem 

Metravib in collaboration with TotalEnergies One Tech R&D Safety has developed for the past four 

years a system called AGLED for the early detection, localization and classification of such leaks 

exploiting acoustics and artificial intelligence driven by physics. Numerous tests have been conducted 

on a theater representative of gas production facilities created by TotalEnergies in Lacq (France) to build 

a robust learning database of leaks varying in flowrates, exhaust diameters and also types (hole, nozzle, 

flange...). Moreover, to limit the number of false alarms, a relearning strategy has been implemented to 

handle unexpected disturbances (wildlife, human activities, meteorological events...). The presented 

paper describes the global architecture of the system from noise acquisition to the gas leak probability 

and coordinates. It gives a more in-depth look at the relearning algorithm and its performance in various 

environments. Finally, thanks to a complementary collaboration with Air Liquide, an example of test 

campaign in a real industrial environment is presented with an emphasis on the improvement obtained 

through relearning. 

1.0 INTRODUCTION 

As part of a project on major risks prevention, TotalEnergies searches technologies and expertise to 

detect, localize and quantify potential gas leaks on facilities. In plants with pressurized flammable gases, 

it is relevant to early detect gas leaks to prevent build-up of dangerous concentrations. Accumulation of 

gas can lead to explosions and fires, which are the main major accidents. TotalEnergies has created a 

theater representative of these facilities (TADI - TotalEnergies Anomaly Detection Initiatives) serving 

as technological showcase. On these facts and with its relevant experience in acoustic products and 

services, Acoem Metravib proposed to develop a system based on acoustics to achieve this challenge, 

with a particularly focus on gas leak detection and localization.  

Acoustical system, because of its presence even in places hostile to man and its objectivity, enables to 

cover a wider perimeter while limiting the human factor. This technology is different from conventional 

and commonly used detectors, especially for hydrogen detectors [1]. It could bring a real aid to the 

exploitation by preventing major accident. Currently, human still detects close to half of gas leaks in 

industrial environments as the conventional gas detectors, widely used, require gas to enter a fixed-point 

gas or pass through the path of a linear detector. These existing technologies can be unreliable in open 

areas especially due to wind direction. The possible non-detection of gas leaks constitutes one of the 

major limits of these current monitoring strategies. According to the analysis of 7 years of data relating 

to hydrocarbon major and significant releases on offshore oil and gas installations in the United 

Kingdom, an effective detection rate of approximately 45% has been recorded [2]. 
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This paper does not intend to make a review of gas leak detection by acoustic and signal processing as 

Adnan et al. did [3]. Current existing commercial systems based on acoustic for gas leak detection are 

mostly using ultrasound technology. They can be made of autonomous punctual sensors without the 

capability of localize a gas leak. As reported by end-users (as TotalEnergies and Air Liquide R&D 

teams), these systems produce a lot of false alarms and are not always reliable. Some devices use 

acoustic imaging with ultrasound microphones to localize a gas leak but these systems need human 

action to scrutinize the soundscape. 

In 2018, Acoem Metravib developed a demonstrator taking advantage of some technological bricks of 

its innovation portfolio with adaptions to gas leak detection and localization. This demonstrator was 

based on standard microphones (i.e. not ultrasound microphones, 20-20.000 Hz microphones) allowing 

a wider directivity for sound recording. It proposed a different approach from existing solutions for gas 

leak detection based on acoustic. Tests conducted on TADI platform in 2018 showed promising results 

with a satisfying localization and detection of leaks generated through various scenarios and types of 

gases (CH4, N2, CO2). On the basis of signals recorded during the test campaigns, statistical processing 

tools (clustering) and neural network were developed to improve the system efficiency and accuracy. In 

2019, Metravib proposed to complete developments performed in 2018 to introduce an industrial 

prototype. To this end, a dedicated prototype of antenna has been developed and constructed, associated 

to a specific monitoring system (HMI, services, NTP server, etc.) in order to be able to localize the 

position of a gas leak thanks to a network of several antennas. Localization and identification 

performances of this dedicated system have been demonstrated in representative gas leak conditions, on 

TADI platform, on a long-term period (minimum four years). In 2020, Acoem Metravib managed to 

strengthen the hardware and to improve the performance of the system by reducing the detection time 

to 12 s, by improving the localization precision, and by dropping the false alarm rate dramatically 

through the introduction of the relearning process. The elevation was also introduced in the localization 

algorithm, allowing the 3D localization of gas leaks with an overall error of less than 5 m. Finally, a 

first version of the gas leak classification was also developed in order to predict the magnitude order of 

the detected leak with 3 classes according to gas leak flow rates. 

This report first describes the full computation chain from the noise recording to the leak prediction. 

Then the relearning process used for the reduction of the false alarm rate is described. Finally, a test 

campaign performed in an Air Liquide production site is presented and the results are discussed. 

2.0 DESCRIPTION OF THE FULL PROCESS 

For confidentiality reasons, the exact process cannot be described. The full deployment of the solution 

can be summarized in two groups. First, several 4-microphone antennas (in the audible frequency 

domain) are installed and listen to their surroundings. Then, one central unit (server) gather the data 

given by the antennas and merge them to communicate the results of fusion to an operator. This overall 

process is described in Fig. 1 representing the architecture of the AGLED (Acoustic Gas Leak Early 

Detection) system. 

The first part of the analysis happens in the antennas. Each twelve seconds, a recording of a few seconds 

is made. A processing step is launched and computes more than 50 acoustic features from this file. These 

are time and frequency descriptors of the noise. These features fed to a neural network trained from a 

large database that give a gas leak detection probability. A value close to one being a gas leak and a 

value zero being anything but a gas leak. The database is composed of more than 1400 real gas leaks 

(so a database of more than 5600 signals recorded by 4 antennas) varying in flowrates, type of gas 

(mostly CH4, CO2, N2), distance, gas leaks exhaust diameters and also types (hole, nozzle, flange...). 

Thanks to this large amount of gas leak sounds in the database, the neural network is enough trained in 

order to detect any type of gas leaks that would create a sound not masked by the soundscape. In parallel, 

thanks to the four microphones, the direction of arrival of the noise is calculated. This data is then sent 

to the central unit. 
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When the computer receives the analysis from all the antennas, it computes a feature called Confidence 

Index (CI) that will average the probabilities from each antenna with several other time-related 

treatments to ensure a good reactivity but also to limit the presence of one-time false alarms. The 

localization information is also gathered to pinpoint the estimated leak location in a specific monitoring 

area and a feature called Cluster Density (CD) is computed to evaluate the geometrical stability of the 

estimated position. Several zones of monitoring composed by independent antennas can be configured 

with the server. At least two antennas are needed to detect a gas leak to compute a fusion. No fusion is 

authorized out of a monitoring zone.  

 

Figure 1. AGLED system architecture 

3.0 RELEARNING PROCESS 

It is impossible to build a noise database comprehensive enough so that the neural network can learn all 

the different non-leak noises that can be heard on any industrial site. From one site to another or even 

from one zone to another in the same site, the local acoustic landscape can be very different. That means 

that it is nearly impossible to have a neural network that will have a low false alarm rate because there 

will always be a type of noise that has no close match in the learning database. Therefore, it is very 

important to tailor the database to a new industrial site where antennas will be installed. Moreover, in 

machine learning the representativeness of the learning database is crucial so that new samples can be 

correctly classified. In that regard, the best way to build the database is to include noise recordings 

directly gathered from the location where the antennas are installed.  

A relearning algorithm has been developed to cover that aspect. The global description of this algorithm 

is represented in Fig. 2. A main neural network is produced from a generic database of gas leaks and 

various non-leak noises. This neural network will at some point encounters a new noise source that is 

wrongly classified. The algorithm consists in substituting a portion of the initial database with the new 

data and reproducing a new neural network. The data is in a way substituted and not added to the initial 

database to keep the same leak/non-leak ratio. 

The loss of some of the initial data is considered negligible with respect to the amount of data present. 

The new neural network is then tested to ensure both the non-regression on the leak detection capabilities 

and correct classification of the new noise source. This process can be repeated each time a new noise 

source disrupts the gas leak monitoring producing false alarms. 
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An example of scoring for a new site installation (site of Section 4.1) is shown in Fig. 3, with for each 

plot the old neural network in dashed orange and the new one in blue. The result of this validation 

process has to be validated by human. 

 

 

Figure 2. Description of the relearning process 

 

Figure 3. Example of the scoring of a relearning  

The exact nature of the data cannot be disclosed but in terms of quantity, less than 15 minutes of audio 

was used in that relearning, split in two for both the learning and the scoring parts. The top left plot 

gives the probability associated with the new data sorted in ascending order. In that case, with one being 

a gas leak and zero being everything else, the old neural network in dashed orange does not understand 

the new data and incorrectly identifies it as a leak. The new neural network, in blue, however correctly 

predicts almost all the new data as non-leak with a threshold of 0.8 and will not ever give false alarms 

for similar events. The three other plots compare the performance of both old and new neural networks 

against a scoring database. The top right plot shows the ROC (Receiver Operating Characteristic) curves 

for the full database composed of non-leak noises and leaks with a mass flowrate range from 0 to 

hundreds of grams per seconds. This database amounts for more than 50 hours of data. The rule of thumb 

of a ROC curve is that the best performance is obtained when the area under the curve is maximum, i.e. 

close to one. In that case, both neural network have equivalent performance on the scoring database. 

Actual dB 
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The two bottom row plots show the probability obtained with both neural networks but using only gas 

leaks. The bottom left plot uses class 1 and 2 leaks (<10 g/s) and the bottom right only class 3 leaks 

(>10 g/s). Here again, the relearning has little impact on the leak detection capabilities of the three 

classes but highly improves the behavior of the system in the new environment. In that example, the 

performances are the same as before the relearning with a much better handling of the false alarms that 

were encountered. The new neural network can be substituted for the old one for better overall behavior. 

4.0 GAS LEAK DETECTION IN AN INDUSTRIAL TEST SITE 

4.1 Test site presentation 

One of the industrial pilots used in this project is the Air Liquide oxygen production plant in Pierrelatte 

(France) showed in Fig. 4. In terms of noise level, near equipment one could measure more than 70 dB 

between 2 kHz and 20 kHz, the typical frequency range of gas leak noises in the audible spectrum. Four 

antennas were installed on that site. 

 

 

 
 (a) (b) 

Figure 4. (a) Monitored part of the Air Liquide oxygen plant in Pierrelatte – (b) Antenna 10  

To ensure the integrity of the devices, no gas leak with explosive gas were created on site the day of a 

test campaign. Instead, pressurized air cylinders were used (Fig. 5). A regulator controlled the air 

flowrate coming out from pressurized cylinders. The gas leak program is given in Table 1 and a map of 

the site with the position of the leaks (blue dots) and antennas (red crosses) are given in Fig. 6. The 

squares on the map represent a scale of 5 x 5 m. The red cloud represents a small permanent gas leak in 

the installation that could disturb the system not detected before the test campaign. Mainly class 2 leaks 

were performed, meaning gas leaks with a flowrate between 1 g/s and 10 g/s with a focus on the 

localization of the leak. Indeed, the objective was for the AGLED system to study the impact of sound 

masking by local equipment on both the detection and localization and the limits of detectability with 

respect to the fairly high background noise. The monitoring zone 1 included the 4 antennas (Fig. 6) were 

of almost 45 x 25 m. 

As pressurized air was used, it is important to keep in mind that the leaks created during the test 

campaign are generally less noisy than the gas leaks expected to be detected with this type of system 

based on acoustics. All other things being equal, the type of gas does not directly interfere on gas leaks 

sound signatures, but rather on sound power. 



6 

 

Figure 5. Air cylinders used during the tests for leak simulation 

Table 1. Description of the leaks performed during the tests 

Test 

Number 

Release 

Diameter 

(mm) 

Release 

Pressure 

(bars) 

Release 

flowrate 

(g/s) 

Release 

Location 

Release 

Start 

Release 

Stop 

1 1 10 2.48 A 16:53:16 16:53:56 

2 1 20 3.51 A 16:53:56 16:55:56 

3 1 30 4.29 A 16:55:56 16:56:56 

4 1 30 4.29 D 17:01:26 17:02:26 

5 1 20 3.51 D 17:02:38 17:03:38 

6 1 10 2.48 D 17:03:50 17:04:38 

7 1 30 4.29 C 17:06:26 17:07:26 

8 1 20 3.51 C 17:07:38 17:08:38 

9 1 10 2.48 C 17:08:50 17:09:50 

10 1 30 4.29 E 17:25:26 17:26:56 

11 1 20 3.51 E 17:27:10 17:28:10 

12 1 10 2.48 E 17:28:26 17:29:26 

13 1 30 4.29 F 17:31:26 17:32:38 

14 1 20 3.51 F 17:32:58 17:33:56 

15 1 10 2.48 F 17:34:10 17:35:11 
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Figure 6: Map of the site with location of antennas and the release points 

In terms of background noise and congestion, the central area near points D and E is the most 

complicated. This area is shown in Fig. 4. Poorer results are expected for leaks performed there. 

Moreover, the point F - far from the antenna and even further from the production equipment - was 

chosen to test the limits of detectability. 

4.2 Test campaign results 

Three neural networks are compared. The first (NN1.1) consists in a neural network based on a neural 

network NN1 with a relearning performed a few days prior to the tests, when a gas leak could be heard 

but was not detected before the test (red cloud in Fig. 6). This neural network was the one used the day 

of the tests. The second one (NN1.2) is also based on the neural network NN1 but with a relearning of 

data on the day of the tests after the gas leak was patched. Finally a third neural network (NN2.2) is 

used. It is based on a different neural network (NN2) that has a more complete learning database with 

industrial sounds, as well as leaks superimposed with such sounds, improved with relearning. This 

neural network comes from a data augmentation work not explained here but allowing a better behavior 

of the system in an industrial installation noisiest than TADI. The same data as for NN1.2 was used for 

the relearning. The results using the base neural networks NN1 and NN2 are not shown here because in 

rich environments such as the Air Liquide Pierrelatte plant, the probabilities are always close to one 

before the first relearning, as discussed below. 

Fig. 7 shows the CI the day the neural network NN1.1 is introduced. First, the NN1 is in place, it 

continuously gives a CI close to one, showing that it does not understand the environment. The 

background noise is closer to the recordings of leaks present in its database than any other non-leak 

noise. A relearning is done and deployed onsite at 7 am. The CI drops immediately below 0.2 because 

now NN1.1 can link the new recordings (i.e. the soundscape) to the samples that were added to its 

database and labelled as non-leak.  

As explained in Section 2, the probability obtained by each antenna is translated into an indicator named 

CI from the moment a fusion occurred in the monitoring zone. The results presented hereafter in Table 

2 are the confidence indexes averaged and rounded on the duration of the leak. 

 

Zone 1 

5 m 
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Figure 7. Confidence Index before and after relearning 

During the tests, the operators identified a small leak. It was located at the red cloud near the antenna 7 

in Fig. 6. This had several impacts on the results. The first one is that before the gas leak was patched, 

the antenna 7 could hear a real gas leak. This leak was however small enough that the data from the 

three other antennas were not polluted. The data from antenna 7 was then removed from the study. 

Moreover, for the neural network NN1.1, the relearning had falsely labelled data due to this gas leak. 

The impact of this is discussed below. Between gas leak 9 and 10, clean data were recorded for the 

relearning used in NN1.2 and NN2.2. The gas leak 10 to 15 were not estimated with NN1.1. 

The first neural network (NN1.1) does not work. Even if the leaks of the test campaign were clearly 

audible, the CI remained at zero; the leaks were not detected. This is due to the fact that the relearning 

that was performed a few days before the test campaign integrated data corresponding to a gas leak noise 

that was added to the database and labelled as non-leak. This field test confirmed that using not well-

labelled data degraded greatly the performance. It showed that it is important to be completely sure that 

the data used for relearning does not include any type of gas leak sound. Moreover, it highlights the 

need to perform a gas leak campaign with pressurized air cylinders after an antennas network installation 

to check that after relearning (adaptation of the system to it soundscape) the AGLED system can still 

detect a real gas leak. 

The second neural network shows better results with a satisfying detection of all leaks for an upstream 

internal pressure of 30 bar, except the one at location F. This is mainly due to the distance of point F to 

the nearest antennas and to the geometric spreading of sound. The performance drops for the other leaks 

except number 8. Even though it is a step forward, the less noisy gas leaks are not properly detected. 

This is explained by the fact that the emergence of the leaks is not as high as for the 30 bar leaks. In this 

case, the recording of the leak is very similar to the data used in the relearning. Moreover, in the database 

used for the creation of NN1, no leak superimposed with industrial noises were present. This 

configuration is then new for the neural network and could explain the low values of gas leak detection 

probabilities and of confidence indexes for such leaks. 

Finally, the neural network NN2.2 is compared. The difference with the NN1.2 is that the database of 

the base neural network NN2 is more complete and consider gas leaks superimposed with typical 

industrial noise. It should be noted that no data from the Pierrelatte plant of Air Liquide was used in the 

development of NN2. With NN2.2, the results are even better with a near perfect detection of all leaks. 

Only the quieter leaks in the central area (e.g. gas leaks 6 and 12) and far from the antennas in location 

F (e.g. gas leaks 13, 14 and 15) are not detected. After listening and analyzing the different raw data of 

these gas leaks, it could be confirmed that they do not emerge from the background noise for at least 

two antennas. The fusion could then not be performed. We are close to physical limits for gas leak 

detection based on acoustic. With appropriate data, the system shows satisfying performances for leaks 

as low as 2.5 g/s (depending on the leak-sensor distance). For all the gas leaks detected, the accuracy in 
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localization was under 5 m. With NN2.2 only one false alarm was obtained during the test campaign. In 

the following 2 months after the installation the false alarm rate have been lower than 0.5 per day. 

Table 2. Confidence Indexes according to the simulated leaks 

Test 

Number 

Release 

Diameter 

(mm) 

Release 

Pressure 

bars) 

Release 

flowrate 

(g/s) 

Release 

Location 
NN1.1 NN1.2 NN2.2 

1 1 10 2.48 A 0 0 1 

2 1 20 3.51 A 0 0.4 1 

3 1 30 4.29 A 0 0.7 1 

4 1 30 4.29 D 0 1 1 

5 1 20 3.51 D 0 0.2 1 

6 1 10 2.48 D 0 0 0.1 

7 1 30 4.29 C 0 1 1 

8 1 20 3.51 C 0 1 1 

9 1 10 2.48 C 0 0.3 1 

10 1 30 4.29 E x 0.3 1 

11 1 20 3.51 E x 0.1 0.8 

12 1 10 2.48 E x 0 0.1 

13 1 30 4.29 F x 0 0 

14 1 20 3.51 F x 0 0 

15 1 10 2.48 F x 0 0 

 

The same test has been performed in other industrial sites showing similar results and a false alarm rate 

roughly lower than 0.5 false alarm per day was obtained during the following days after relearning and 

validation test campaigns with pressurized cylinders. 

5.0 CONCLUSION 

This paper presents one of the first industrial pilot for the AGLED system which was developed to detect 

gaseous leaks based on acoustics. The relearning process - which is an important aspect in acoustic-

based detection - was presented. It showed great capabilities in reducing the false alarms. In fact, without 

it, the gas leak monitoring is not possible. The results obtained during the test campaign were very 

different from one neural network to the other. But it can all be summed up by the link between the 

representativeness of the data used for the learning of the neural networks against the data used during 

the assessment of the system. With clean data from the site and representative leak recordings on an 

industrial platform, the results are very encouraging even for relatively low flowrates. This study 

demonstrates that in addition to the background work required for the development of an innovative 

detection system, collaborative work with industry brings valuable information and conditions fostering 

the efficiency, the reliability and the resilience of such equipment. However, the capability of detection 

of a gas leak with such system will always depends on the sound emergence of the gas leak, of the 

distance of a leak to the sensors and of the background noise level. Several complementary studies 

should be performed to ensure the limits of detectability of the system according to those parameters.  
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The last point that it has to be mentioned is that Acoem Metravib succeeds in developing an ATEX 

version of the AGLED which is now available for specific sites having this kind of certification 

requirement. Some of these ATEX prototypes are currently under validation tests in other industrial site 

to improve the understanding of the system behavior. The same methodology of validation than the one 

exposed here is being used. The tests performed up to now (not showed in this paper) are giving 

encouraging results since the sound signatures of all the gas leaks in the actual database are enough 

different from the industrial site soundscapes (particularly for highest mass flowrates). Preliminary tests 

have confirmed that for a same type of gas leaks (mass flowrate, distance,…) H2 gas leaks are louder 

than CH4 gas leaks that are louder than N2 gas leaks. It confirms that it gives a favorable condition for 

the system to detect such gas leaks that are not easy to create under safe conditions. Controlled H2 leaks 

will soon be carried out on the TADI infrastructure to confirm this point. 

This work was carried out in close collaboration with TotalEnergies, Air Liquide and Acoem Metravib. 
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