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ABSTRACT 

High-accuracy gas dispersion models are necessary for predicting hydrogen movement, 

and for reducing the damage caused by hydrogen release accidents in chemical 

processes. In urban areas, where obstacles are large and abundant, computational fluid 

dynamics (CFD) would be the best choice for simulating and analyzing scenarios of the 

accidental release of hydrogen. However, owing to the large computation time required 

for CFD simulation, it is inappropriate in emergencies and real-time alarm systems. In 

this study, a non-linear surrogate model based on deep learning is proposed. Deep 

convolutional layer data-driven autoencoder and batch normalized deep neural network 

is used to analyze the effects of wind speed, wind direction and release degree on 

hydrogen concentration in real-time. The typical parameters of hydrogen diffusion 

accidents at hydrogen refuelling stations were acquired by CFD numerical simulation 

approach, and a database of hydrogen diffusion accident parameters is established. By 

establishing an appropriate neural network structure and associated activation function, 

a deep learning framework is created, and then a deep learning model is constructed. 

The accuracy and timeliness of the model are assessed by comparing the results of the 

CFD simulation with those of the deep learning model. To develop a dynamic 

reconfiguration prediction model for the hydrogen refuelling station diffusion scenario, 

the algorithm is continuously enhanced and the model is improved. After training is 

finished, the model's prediction time is measured in seconds, which is 105 times quicker 

than field CFD simulations. The deep learning model of hydrogen release in hydrogen 

refuelling stations is established to realize timely and accurate prediction and simulation 

of accident consequences and provide decision-making suggestions for emergency 

rescue and personnel evacuation, which is of great significance for the protection of 

human life, health and property safety. 
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1.0 INTRODUCTION 

As the global climate and energy concerns continue to escalate, countries worldwide are 

becoming more focused on researching and utilizing clean energy. In the "14th Five-Year Plan" 

of China, hydrogen energy has been included in Chapter 9, Section 2 "Forward-looking 

Planning for Future Industries," and has been jointly planned as part of "organizing and 

implementing future industry incubation and acceleration plans, planning and laying out several 

future industries." Guided by policy, China's hydrogen energy industry is rapidly developing, 

with continuous improvement of hydrogen energy infrastructure, which has triggered a 

"hydrogen energy boom." 

With the ongoing promotion of "hydrogen energy," the development of hydrogen refuelling 

stations has been rapidly advancing. Unfortunately, accidents can occur, as was the case on 

May 23, 2019, in Jiangling City, Gangwon Province, South Korea, where a hydrogen storage 

tank leaked gas, resulting in an explosion that caused two fatalities and six injuries. On June 10, 

2019, a fire and explosion occurred at an operational hydrogen refuelling station in Oslo, the 

capital of Norway. This incident underscores the importance of recognizing the potential 

dangers associated with the storage and use of hydrogen gas. Despite its many benefits, such as 

producing zero emissions, hydrogen gas can be highly flammable and explosive under certain 

conditions, making safety precautions essential to avoid accidents and injuries. Additionally, 

being prepared for an emergency response and personnel evacuation in case of a hydrogen leak 

is equally important to minimize the consequences of such occurrences. Thus, developing rapid 

methods for predicting the outcomes of hydrogen leaks and quickly reconstructing the entire 

hydrogen flow field is essential. Urgent action is required to enhance safety measures and 

emergency response protocols for the use of hydrogen in refuelling stations.  

The commonly used CFD model can provide accurate representations of the entire flow field 

distribution following a hydrogen leak. However, CFD modelling can be time-consuming, 

making it challenging to generate simulation results promptly following a leak. As a result, 

using CFD methods to restore flow field conditions at the time of an accident during the 

accident investigation stage may not be feasible. 

Recognizing the limitations of CFD methods in reconstructing flow fields, many researchers 

have turned their attention to artificial intelligence (AI) technology as a promising alternative 

for achieving rapid and accurate flow field prediction and restoration. In contrast to CFD, AI-

based techniques can produce predictions in a much shorter period, making them suitable for 

scenarios that require the rapid reconstruction of flow fields. Deep learning technology can 

extract complex data features from large amounts of data, learn from experience or knowledge 

of the data, and make predictions for relevant complex data 1-4. This method uses the powerful 

multi-dimensional and complex non-linear data representation capabilities of deep learning 

technology to directly mine and fit data from the flow field, achieving the prediction of flow 

field features 5. Many scholars both domestic and international have conducted research on the 

reconstruction of the consequences of substance leakage and diffusion based on deep learning 

technology and successfully predicted the concentration distribution after the leakage through 

deep learning modelling. Na et al. 6 studied the diffusion of toxic gases in urban areas and 



proposed a non-linear surrogate model based on deep learning to analyze the death rate of gas 

diffusion in real-time. The model takes several orders of magnitude less time than the CFD 

model. Shi et al. 7 proposed a mixed probability convolutional-variational autoencoder-

variational Bayesian neural network (Conv-VAE-VBNN) based on deep learning technology 

for real-time prediction of the consequences of leaks and diffusion, to replace CFD models. 

Zou Jianguo 8 proposed a prediction model called RCL-Learning based on residual network 

and convolutional LSTM integration, which was used to predict the diffusion trend of regional 

air pollutants. Ni Jing 9 used field experimental data to construct toxic heavy gas diffusion 

concentration prediction models based on deep belief networks and convolutional neural 

networks respectively. The results of the study showed that these prediction models 

demonstrated significant advantages. 

Currently, research on using deep learning methods to construct CFD proxy models to achieve 

rapid flow field reconstruction and prediction of leakage consequences mainly focuses on toxic 

gases, methane, and other substances. However, there has been relatively little research on the 

rapid prediction of consequences resulting from hydrogen leaks. This study aims to create a 

rapid prediction algorithm for high-pressure hydrogen leakage outcomes in hydrogenation 

stations using deep learning methods. This algorithm will serve as a basis for guiding 

emergency response and personnel evacuation decisions. 

2.0 HYDROGEN DISPERSION CFD MODEL 

According to the relevant regulations, the fire distance between the high-pressure hydrogen 

storage tank and the firewall is set at 6 meters, and the fire distance between the hydrogen 

processor and the firewall is set at 10 meters. The minimum fire distance between the high-

pressure hydrogen storage tank and the hydrogen station fence is 8 meters, while the minimum 

fire distance between the hydrogen processor and the fence is 5.3 meters. 

In this study, the main parameters of the environmental conditions for CFD simulation are 

ambient temperature, ambient pressure, ambient wind speed, and wind direction. To facilitate 

the CFD simulation process, the researchers standardized the local ambient temperature to 

300K and set the ambient pressure to the standard atmospheric pressure. 

The leak source was chosen to be the high-pressure hydrogen storage tank. The leak point is 

located at the interface between the top of the high-pressure hydrogen storage tank and the 

flange, so the modelling of the high-pressure hydrogen storage tank needs to be detailed. 

According to the relevant requirements of the enterprise standard LNQ019-2021 "Hydrogen 

Storage Bottle Container Group for Hydrogen Refueling Stations," the high-pressure hydrogen 

storage tank with a storage working pressure of 45MPa has a model number of a single bottle 

with an outer diameter of 485mm and a volume of 1000L. Based on the standard model, the 

high-pressure hydrogen storage tank was modelled, and the entire physical model of the 

hydrogen refuelling station is shown in Fig. 1. 



 

Figure 1. Physical model of hydrogen refuelling station 

In this study, 20 different operating conditions of high-pressure hydrogen gas leakage in 

hydrogen stations were simulated using computational fluid dynamics (CFD). The simulations 

considered environmental conditions with and without wind, including 5 wind speeds and 2 

wind directions. The leakage process was examined for 2 leak sizes and 2 leakage rates. The 

specific physical conditions for CFD simulations of high-pressure hydrogen gas leakage in 

hydrogen stations are shown in Table 1, where "+Z" indicates south wind and "-Z" indicates 

north wind. 

Table 1.  CFD simulation of physical working conditions 

Number 
Wind speed 

(m/s) 

Wind 

direction 

Leakage 

aperture 

(mm) 

Virtual 

nozzle 

diameter 

(mm) 

leakage 

rate 

(kg/s) 

Pressure 

(MPa) 

Temperature 

(K) 

1 0 +Z 10 14 1.85 45 300 

2 0 -Z 10 14 1.85 45 300 

3 0 +Z 20 28 7.40 45 300 

4 0 -Z 20 28 7.40 45 300 

5 2 +Z 10 14 1.85 45 300 

6 2 -Z 10 14 1.85s 45 300 

7 2 +Z 20 28 7.40 45 300 

8 2 -Z 20 28 7.40 45 300 

9 2.4 +Z 10 14 1.85 45 300 

10 2.4 -Z 10 14 1.85 45 300 



11 2.4 +Z 20 28 7.40 45 300 

12 2.4 -Z 20 28 7.40 45 300 

13 3.2 +Z 10 14 1.85 45 300 

14 3.2 -Z 10 14 1.85 45 300 

15 3.2 +Z 20 28 7.40 45 300 

16 3.2 -Z 20 28 7.40 45 300 

17 3.6 +Z 10 14 1.85 45 300 

18 3.6 -Z 10 14 1.85 45 300 

19 3.6 +Z 20 28 7.40 45 300 

20 3.6 -Z 20 28 7.40 45 300 

 

ANSYS Fluent 2022R2 was selected to perform CFD simulation, and the simulation results 

were directly outputted during post-processing after the solution was completed. After the 

simulation was completed. Following the simulation, the results of the high-pressure hydrogen 

gas leak simulation at the refuelling station were output in the form of cloud diagrams. To 

enhance the visualization of the simulation results, a contour plot was created on the plane 

formed by the centerline position of the hydrogen jet in the ZX plane. This allowed for a clearer 

representation of the distribution of the high-pressure hydrogen gas leak simulation results. 

Given that the explosion limit of hydrogen ranges from 4% to 75%, hydrogen within this 

concentration range poses a high risk of explosion. This study primarily focuses on the 

concentration distribution of high-pressure hydrogen leakage within this dangerous range. Fig. 

2 shows the concentration distribution range of high-pressure hydrogen leakage in six working 

conditions within 4%~75% in the cloud map. 



 

Figure 2. CFD leakage simulation results from high-pressure hydrogen leakage from a 

hydrogen refuelling station 

Based on the nature of simulating the leakage of high-pressure hydrogen gas, it is classified as 

a transient simulation in the CFD process. To ensure accurate results, a residual convergence 

criterion of 0.001 is set for each factor. The residuals in the CFD simulation process are shown 

in Fig. 3. 



 

Figure 3. Convergence results of the residuals of each factor in the CFD iterative calculation 

process 

Fig. 3 illustrates that as the number of iterations increases, the residuals for each factor in the 

CFD simulation process gradually decrease, eventually converging below 0.001. This indicates 

that the CFD model has accurately calculated the simulation results. The concentration 

distribution results obtained from the simulation of high-pressure hydrogen gas leakage under 

20 different operating conditions in Fluent should be saved and exported. The accumulated data 

will be used to construct a deep learning model to predict the consequences of hydrogen gas 

leakage at hydrogen refuelling stations in the future. 

3.0 APPLICATION OF CAE-DNN 

3.1 Data preparation 

To create a proxy model using neural networks, hundreds of sample data points are required 

for training. However, manually acquiring a large amount of data is expensive. To generate the 

required data, an automated process is used by linking Python code with Fluent. The operating 

conditions are used as the input data for the entire model. The input operating parameters and 

the resulting hydrogen concentration distribution under those parameters are used as the inputs 

and outputs, respectively, for the deep learning model that was constructed. CFD simulation-

generated data on the hydrogen concentration distribution is used as input data for the data 

reconstruction component. Training the proxy model directly with Fluent's results can be 

challenging. Therefore, it is necessary to preprocess the data. 

The primary variables in the working conditions are ambient wind speed, wind direction, and 

hydrogen leak rate. The leak rate is associated with the size of the leak orifice. The development 

of a deep learning surrogate model for high-pressure hydrogen leaks at hydrogen refuelling 

stations does not incorporate the geometric shape of the station. Instead, the inputs to the deep 

neural network model consisting of the wind speed (v), wind direction (d), and leak rate (q). 

Following the application of normalization algorithms, the input data for the regression neural 



network model is confined to the range of [0, 1] or [-1, 1]. The normalization of the original 

data features may result in a faster gradient descent speed, leading to faster convergence during 

the gradient descent optimization process. 

Due to the difficulty in collecting data, the amount of data available may be limited, and there 

may be an uneven distribution of data. To address this issue, we apply data augmentation 

methods in this paper to increase the amount of training data and enhance its diversity. This 

approach effectively mitigates the overfitting phenomenon that can occur in models trained on 

sparse data features and enables the model to generalize better and improve its robustness. 

The outcome of CFD simulations aimed at predicting the effects of hydrogen leaks at refuelling 

stations is primarily impacted by three key parameters: wind speed (v), wind direction (d), and 

leak rate (q). Predicting the concentration distribution of leaked hydrogen gas is possible by 

inputting these three operational parameters. The input dataset for the data regression 

component of the model contains the wind speed (v), wind direction (d), and leak rate (q) 

parameters under 20 distinct operating conditions. This part of the input is represented as I∈

R1×3. The entire input part data set can be expressed as： 

In= [

I11 ⋯ I13

⋮ ⋱ ⋮

In1 ⋯ In3

] ,  n=20 

Feature mapping of CFD data is predominantly achieved through the parts of data 

dimensionality reduction and data reconstruction. The input for this part is the CFD output data 

corresponding to 20 operating conditions after data augmentation. The input for the feature 

mapping section can be represented as x∈R400×300×3 . The entire input dataset can be 

represented as： 

xn= [

x11 ⋯ x1j

⋮ ⋱ ⋮

xi1 ⋯ xij

] 

Once the input dataset for the entire algorithm model is established, the training and validation 

sets are constructed. The data set for dimensionality reduction and data reconstruction is divided 

into an 8:2 ratio. For data regression, the dataset has been split into a 7:3 ratio, with 70% of the 

data used for training and the remaining 30% for validation. 

3.2 Training and simulation 

In traditional autoencoders, the encoder reduces high-dimensional data, such as images, into a 

low-dimensional feature vector, while the decoder upsamples the compressed data to 

reconstruct the original image. However, using fully connected linear layers in both the encoder 

and decoder can be ineffective in representing high-dimensional data, leading to overfitting or 

underfitting during feature extraction. Therefore, a deep convolutional neural network is used 

as the encoder instead of linear layers. When it comes to image reconstruction tasks, various 

methods can be used to upscale image data. Among these methods, transposed convolution is 

the most effective. Consequently, a transposed convolutional neural network is employed for 

the upsampling process in the decoder when building a convolutional autoencoder (CAE) 



model. In addition, mini-batch implementation techniques can be compared for their respective 

characteristics in training the CAE model. Fig. 4 illustrates the structure of the CAE network 

model. 

 

Figure 4. CAE model structure 

Since the model is trained using mini-batch stochastic gradient descent, the input data for the 

CAE model is a three-channel hydrogen leakage concentration distribution map. Batch 

normalization is applied to each layer of the neural network in the encoder and decoder of the 

CAE model. The activation function used in the first five layers is ReLU, while the last 

convolutional layer uses the Sigmoid function for output. In the CAE model, the output single-

channel (3x2) image feature data is directly fed into 6 layers of transposed convolutional neural 

network for upsampling reconstruction, and the result is a three-channel high-dimensional 

output tensor. This ensures that the input and output have the same size during reconstruction. 

To perform data regression prediction, a deep neural network consisting of 7 linear layers is 

constructed. The detailed network structure is illustrated in Fig. 5. 



 

Figure 5. DNN model structure 

The DNN model takes as input the dataset 𝐼𝑛, which contains physical operating conditions for 

hydrogen refuelling stations. Each data record in the dataset is a one-dimensional tensor with a 

size of 3. The model is trained using a supervised learning approach. The DNN model consists 

of 7 fully connected layers. To prevent overfitting during the fitting process, Dropout is applied 

after the fully connected layers in the 3rd, 4th, and 5th layers of the DNN model, and the neuron 

dropout rate is set to 0.1. After the data features are fitted by the DNN model and the data shape 

is modified, they can be passed into a data reconstruction network to generate the hydrogen 

concentration distribution of hydrogen refuelling station leakage consequences as the output. 

Upon completion of the training phase, both the CAE model and data regression DNN model 

were saved. These models were then combined to create the hydrogen refuelling station high-

pressure hydrogen leakage consequence prediction CAE-DNN model. The structure of the 

CAE-DNN model is illustrated in Fig. 6, depicting the encoder, decoder, and data regression 

components. 
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Figure 6. CAE-DNN model 

The CAE-DNN model takes in three physical data inputs, namely wind speed, wind direction, 

and leak rate, to quickly predict the consequences of high-pressure hydrogen gas leaks in 

hydrogen refuelling stations. The model's input is a parameter of shape (1, 3), and the output is 

a three-channel image data of shape (1, 3, 400, 300). After restoring the data shape using 

Torchvision, the final output is a hydrogen distribution cloud map of shape (300, 400, 3). 

4.0 RESULTS AND DISCUSSION 

4.1 Quality analysis of CAE model reconstruction 

To validate the data reconstruction performance of the CAE model, a saved CAE model was 

loaded and the hydrogen concentration distribution data from 20 different operating conditions 

of CFD simulations without data augmentation were used as the development set. As an 

example, the hydrogen concentration distribution results of the CAE model were generated for 

a leakage rate of 7.40 kg/s and a south wind direction, and are shown in Fig. 7. 



 

Figure 7. CAE model leakage concentration distribution data reconstruction results 

A comparison was made between the reconstructed hydrogen concentration distribution results 

of the CAE model and the CFD simulation results for a leakage rate of 7.40 kg/s, a head-on 

wind direction, and various wind speeds. It was observed that the CAE model accurately 

reconstructed the hydrogen concentration field after the leakage at low wind speeds (0m/s, 2m/s, 

2.4m/s). Nevertheless, at wind speeds of 3.2m/s and 3.6m/s, the reconstructed hydrogen 

concentration distribution images by the CAE model exhibited a significant rise in noise, a 

sparsely reconstructed distribution at low hydrogen concentrations, and concentration 

distribution fluctuations at high hydrogen concentrations. 

The Peak Signal-to-Noise Ratio (PSNR) was used to quantitatively analyze the quality of the 

hydrogen concentration distribution images reconstructed by the CAE model. PSNR is a widely 

used engineering term that measures the quality of a signal's representation by comparing the 

maximum possible power of the signal to the noise power that can affect its accuracy. As many 

signals have a very wide dynamic range, PSNR is commonly expressed in logarithmic decibel 

units. The PSNR was calculated using the following method: 

PSNR=10∙log
10

(
MAXI

2

MSE
) =20∙log

10
(

MAXI

√MSE
) 

 

(1) 

where MSE is the Mean Squared Error of image data and MAXI is the maximum value of 

colour intensity for a pixel in an image.  

A larger PSNR value corresponds to a smaller Mean Squared Error (MSE), indicating a higher 

image quality. A larger PSNR value corresponds to a smaller Mean Squared Error (MSE), 

indicating a higher image quality. PSNR evaluation image quality standards are shown in Table 



2. 

The PSNR value of the reconstructed hydrogen concentration data after high-pressure hydrogen 

leakage at the refuelling station output by the CAE model was calculated, and the quality of the 

reconstructed images was analysed. Table 3 shows the PSNR calculation results in 20 different 

operating conditions in the development set. 

Table 2.  PSNR evaluation criteria 

PSNR Range Image quality evaluation results Level 

PSNR ≥40dB 
Very good image quality 

(i.e. very close to the original image) 
A 

30dB≤PSNR<40dB 
Good image quality 

(i.e. distortion is perceptible but acceptable) 
B 

20dB≤PSNR<30dB Poor image quality C 

PSNR<20dB Unacceptable image quality D 

 

Table 3. PSNR calculation results 

Number PSNR Level Number PSNR Level 

1 29.3945 B 11 28.2572 B 

2 31.4305 A 12 29.7720 B 

3 28.9533 B 13 29.3500 B 

4 30.4884 A 14 30.0688 A 

5 28.8098 B 15 30.4391 A 

6 30.3140 A 16 27.7089 B 

7 28.3754 B 17 31.1062 A 

8 30.7570 A 18 28.6609 B 

9 28.1060 B 19 29.4399 B 

10 28.8508 B 20 28.5324 B 

 

Table 3 shows that the CAE model was effective in reconstructing the hydrogen concentration 

distribution results when the wind speed was low and the wind direction was north (opposite to 

the leakage direction), and when the data noise quality was good. However, for other operating 

conditions, the reconstructed data had poor noise quality. The average PSNR value across all 

operating conditions was 29.4408. 

4.2 Quality analysis of CAE-DNN model reconstruction 

CAE-DNN model takes as input three physical operating values of the leak scenario in the 

refuelling station: wind speed, wind direction, and leak rate, i.e., input data 𝐼𝑛 ∈ 𝑅1×3。After 

undergoing DNN calculations in the model, the input data outputs hidden layer data 𝐻𝑛 ∈ 𝑅1×6。

Based on the twenty operating condition data used in the test experiment, the hidden layer 

feature data is reshaped and input into the CAE generator for result generation. Finally, the 

CAE-DNN model outputs a hydrogen concentration distribution image in RGB format. For 

instance, the results obtained by the CAE-DNN model for the condition with a leak rate of 7.40 

kg/s are compared to those generated by CFD, as shown in Fig. 8. 



 

Figure 8. CAE-DNN hydrogen refuelling station high-pressure hydrogen leak consequence 

prediction 

The accuracy of the results generated by the CAE-DNN deep learning surrogate models and 

the CFD method is compared using the Structure Similarity Index Measure (SSIM) concept. 

Additionally, an analysis of the accuracy of the output results produced by the deep learning 

model is performed. The calculation method for SSIM can be found in Equation (2):  

SSIM(x，x̂)=
(2μ

x
μ

x̂
+c1)(2σxx̂+c2)

(μ
x
2+μ

x̂
2+c1)(σx

2+σx̂
2+c1)

 

 

(2) 

where μ is the mean value of the data and σ is the standard deviation of the data, and c is a 

constant. 

Table 4 shows the SSIM and computation time results for the CAE-DNN model. 

Table 4. Evaluation of CAE-DNN model output results 

Number SSIM TIME (s) Number SSIM TIME (s) 

1 0.8538 3.400786 11 0.8555 3.400126 

2 0.8342 3.400197 12 0.8583 3.300252 



3 0.8465 3.300108 13 0.8509 3.400197 

4 0.8751 3.100194 14 0.8649 3.300157 

5 0.8476 3.400220 15 0.8278 3.200092 

6 0.8375 3.300156 16 0.8425 3.200235 

7 0.8705 3.300108 17 0.8251 3.200188 

8 0.8749 3.300251 18 0.8407 3.200092 

9 0.8570 3.400173 19 0.8028 3.400269 

10 0.8358 3.300204 20 0.8445 3.200212 

 

According to Table 4, the average similarity of the CAE-DNN model is 0.8473, and the average 

prediction time is 3.3 seconds. The analysis results indicate that under the same hardware 

conditions when the accuracy of the CAE-DNN model is 84.73% compared to the CFD model, 

the processing time is only 3.3 seconds. In contrast, the CFD simulation method takes around 

4.5 hours to complete under the same hardware and environmental conditions. These findings 

strongly suggest that the CAE-DNN model can effectively serve as a surrogate model for the 

CFD model, providing fast and accurate predictions of the outcomes of high-pressure hydrogen 

gas leaks at hydrogen refuelling stations. 

5.0 CONCLUSIONS 

This study is based on CFD simulation data and builds a deep-learning model for the rapid 

prediction of consequences after high-pressure hydrogen leaks in hydrogen refuelling stations. 

It achieves a fast and accurate prediction of hydrogen concentration distribution after high-

pressure hydrogen leaks. By reconstructing the hydrogen concentration distribution flow field, 

it provides an important decision-making basis for hydrogen safety management in refuelling 

stations and timely emergency response after hydrogen leaks. 

The optimized convolutional variational autoencoder model performed better than the 

convolutional autoencoder model in generating data quality. By building a deep regression 

neural network model, the CAE-DNN deep learning model was constructed. This model can 

rapidly generate concentration distribution results of hydrogen leakage consequences at 

hydrogen refuelling stations by inputting operating condition data. The main conclusions are as 

follows: 

(1) A physical model for simulating hydrogen leakage in hydrogen refuelling stations was 

established. The under-expanded jet of high-pressure hydrogen was simulated under 20 

different operating conditions, and hydrogen concentration distribution data within the 

hydrogen explosion limit along the centerline direction of the leakage jet were obtained for 

different physical conditions. 

(2) Based on the steps of data dimension reduction, data regression, and data reconstruction, a 

CAE-DNN deep learning model was developed to predict the consequences of high-pressure 

hydrogen leaks in hydrogen refuelling stations. This model can take in operational condition 

parameters and predict the corresponding distribution of hydrogen leak concentration. 

Compared with CFD output results, the CAE-DNN model constructed in this study had an 

average accuracy of 84.73% of the CFD model, with an average processing time of only 3.3s, 

while the CFD simulation using grid calculation under the same conditions took 4.5 hours. The 

resulting CAE-DNN algorithm model is nearly 5000 times faster than the CFD method, making 

it a highly efficient and accurate tool for predicting the consequences of high-pressure hydrogen 

leaks in hydrogen refuelling stations. 
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