HIGHLY RESOLVED LARGE EDDY SIMULATIONS OF A LAMINAR-TURBULENT TRANSITIONAL AIR-HELIUM BUOYANT JET IN A TWO VENTED ENCLOSURE: VALIDATION AGAINST PARTICLE IMAGE VELOCIMETRY EXPERIMENTS

E. SAIKALI1,2,3 G. BERNARD-MICHEL1 A. SERGENT2,4 C. TENAUD2

1CEA Saclay - DEN/DANS/DM2S/STMF/LIEFT, 91191 Gif-sur-Yvette cedex, France
2LIMSI-CNRS (ETCM), Université Paris-Saclay, 91405 Orsay, France
3IFD, ED391 SMAER, UPMC Paris 06, Sorbonne Universités, 75006 Paris, France
4UFR 919 Ingénierie, UPMC Paris 06, Sorbonne Universités, 75005 Paris, France

International Conference on Hydrogen Safety (ICHS 2017)
September 12, 2017 – Hamburg (Germany)
Hydrogen Safety:
Non-nuclear applications
Model: physical set-up

- Fuel cell, garage ⇒ Parallelepiped cavity,
- Hydrogen leakage ⇒ Injection of helium $\rho_{\text{amb}}/\rho_{\text{inj}} = 7.24$ at 25° C (real ratio to hydrogen is 14.38) [Bernard-Michel and Houssin-Agbomson, 2017],
- Reducing the mixture concentration ⇒ Vented cavity,
- Laminar-turbulence transition ⇒ OK [Chen and Rodi, 1980],
- Jet spreading ⇒ OK [Kalter et al., 2014].
- Iso-thermal ans iso-bar conditions: $p = 10^5$ Pa and $T = 298.15$ K.
Methodology and key points

Approaches
- Experiment, PIV measurements,
- Numerical approach (currently LES), PIV validation.

Interest
- Buoyant jet regime ($Q = 5 \text{ Nl/min}, \text{Ri}_{inj} = 0.14$),
- Homogeneous layer with stratification ($\text{Ri}_v = 0.99$),
- Limited domain, two vents, BC issue.

Main issues
- CFD code challenge (high gradients, rapid laminar-turbulent transition),
- Outlet boundary condition treatment, two outlet challenge,
- Predictive models (free/limited media),
- No similar work reported in the literature.
LES formulation (LMN approximation)

> Low Mach Number (LMN) hypothesis ⇒ Pressure = \(p(t) + P(x, t) \) [Müller and Muller, 1999]

\[
\begin{align*}
\frac{\partial \bar{\rho} \tilde{Y}_1}{\partial t} &+ \frac{\partial}{\partial x_i} (\bar{\rho} \bar{u}_i \tilde{Y}_1) = \frac{\partial \tilde{\xi}_i}{\partial x_i} + \frac{\partial \tilde{\xi}_i^{SGS}}{\partial x_i}, \\
\bar{\rho} &\equiv \frac{p M}{R T}, \\
\frac{\partial \bar{\rho} \tilde{u}_j}{\partial t} &+ \frac{\partial}{\partial x_i} (\bar{\rho} \tilde{u}_j \tilde{u}_i) = - \frac{\partial \bar{P}}{\partial x_j} + \frac{\partial \tilde{P}}{\partial x_i} + \frac{\partial \tilde{\tau}_{ij}^{SGS}}{\partial x_i} + \bar{\rho} g_j, \\
\frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial}{\partial x_i} (\bar{\rho} \tilde{u}_i) = 0,
\end{align*}
\]

where \(\tilde{\cdot} \) the spatial filter symbol, \(\bar{\varphi} = \bar{\rho} \varphi / \bar{\rho} \) (Favre), \(\bar{u} = (\bar{u}_1, \bar{u}_2, \bar{u}_3) \), \(\tilde{\xi}_i = \bar{\rho} D \frac{\partial \bar{Y}_1}{\partial x_i} \), \(D = 6.91 \times 10^{-5} \)

\(m^2.s^{-1} \), \(\bar{M} = (\sum_{i=1}^{2} \frac{\bar{Y}_i}{\bar{M}_i})^{-1} \), \(\tilde{\tau}_{ij} = 2 \mu \bar{e}_{ij} \) with \(\bar{e}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) - \frac{1}{2} \delta_{ij} \frac{\partial \bar{u}_k}{\partial x_k} \) and \(\bar{g}_j = (0, 0, -g) \).

> Additional SGS terms closed as

\[
\tilde{\tau}_{ij}^{SGS} = \bar{\rho} (\bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j) = 2 \mu_{SGS} \bar{e}_{ij} \quad \text{and} \quad \tilde{\xi}_i^{SGS} = \bar{\rho} (\bar{u}_i \bar{Y}_1 - \bar{u}_i \bar{Y}_1) = \frac{\mu_{SGS}}{S_{SGS}} \frac{\partial \bar{Y}_1}{\partial x_i},
\]

where \(\mu_{SGS} = \bar{\rho} (C_s \Delta)^2 \sqrt{2 \bar{e}_{ij} \bar{e}_{ij}}, \Delta = (\delta_x \delta_y \delta_z)^{1/3}, \ C_s = 0.18 \) and \(S_{SGS} = 0.7 \) [Blanquart and Pitsch, 2008].

Remark

Average symbols \(\bar{\cdot} \) and \(\tilde{\cdot} \) are removed for simplicity in the sequel.

E. Saikali
ICHIS 2017
Tuesday 12 September, 2017 5 / 20
Numerical methods & Boundary conditions

- Semi-implicit scheme (diffusion implicitly), CFL\textsubscript{conv},
- Finite difference volume on staggered grid,
- Spatial discretization: 2nd order center (NS-equation), 3rd order QUICK (species) for $Y_1 \in [0, 1]$,
- Temporal discretization: 2nd order Runge-Kutta,
- Pressure-velocity incremental projection method (Poisson equation).

- IC’s : Cavity filled with pure ambient at rest ($u = 0, Y_1 = 0$),

- BC’s : \(\partial \Omega = \partial \Omega_w \cup \partial \Omega_i \cup \partial \Omega_o \),
 - \textit{Wall boundaries} (\(\partial \Omega_w \)). No slip \(u = 0, \frac{\partial \varphi}{\partial (x \cdot n)} = 0 \) : \(\varphi = \{ P, \rho, Y_1 \} \).
 - \textit{Injection boundary} (\(\partial \Omega_i \)). Constant injection mass flux \(\rho_{inj} Q \), Poiseuille \(u \) profile, \(\rho = \rho_{inj}, Y_1 = 1 \).
 - \textit{Outlet boundaries} (\(\partial \Omega_o \)). Ambient-equilibrium hydrostatic pressure \(P = -\rho_{amb} g z, \frac{\partial u}{\partial (x \cdot n)} = 0 \).

 If \(u \cdot n \geq 0 \), then \(\frac{\partial \varphi}{\partial (x \cdot n)} = 0 \) : \(\varphi = \{ \rho, Y_1 \} \).

 Else, \(Y_1 = 0 \) and \(\rho = \rho_{amb} \).

[CEA TRUST-TrioCFD, 2017]
Geometrical configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>L_x [cm]</th>
<th>Cell numbers</th>
<th>MPI procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_x</td>
<td>2</td>
<td>1,134,404</td>
<td>20</td>
</tr>
<tr>
<td>1_x</td>
<td>3</td>
<td>2,129,220</td>
<td>40</td>
</tr>
<tr>
<td>2_x</td>
<td>3.5</td>
<td>2,609,476</td>
<td>40</td>
</tr>
<tr>
<td>3_x</td>
<td>4.5</td>
<td>3,329,860</td>
<td>60</td>
</tr>
<tr>
<td>4_x</td>
<td>6.75</td>
<td>4,427,588</td>
<td>80</td>
</tr>
<tr>
<td>5_x</td>
<td>10.125</td>
<td>6,108,484</td>
<td>100</td>
</tr>
</tbody>
</table>

- $\partial \Omega_W$ on red surfaces, $\partial \Omega_i$ on yellow surface and $\partial \Omega_o$ on blue surfaces.

- Unstructured uniform cubic mesh (per block) with cell size $\delta \approx 7 \times 10^{-4}$ m ($\delta / \eta = 3.3$ [Chhabra et al., 2006] where η denotes the Kolmogorov length scale),

- 0.5 mm layer around the vents considered as $\partial \Omega_W$ (representing plexi-glass),

- Pipe $d = 1$ cm, $h = 10$ cm, Poiseuille velocity profile (entrance), $L_y = L_z = 2$ cm.
physical time of 110 seconds, statistics [70:110] s,
Velocity magnitude: vertical mid xz-plane
physical time of 110 seconds, statistics [70:110] s,

Velocity magnitude: vertical mid xz-plane

RMS (velocity magnitude): vertical mid xz-plane
Global quantities and convergence

> Integrated quantities

<table>
<thead>
<tr>
<th>Configurations</th>
<th>$< M_{He} > t \times 10^{-6}$ kg</th>
<th>$< Q_{v}^{bot} > t \times 10^{-4}$ m3.s$^{-1}$</th>
<th>$< Q_{v}^{top} > t \times 10^{-4}$ m3.s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_x</td>
<td>8.98677</td>
<td>-2.5817</td>
<td>3.48674</td>
</tr>
<tr>
<td>1_x</td>
<td>8.10638</td>
<td>-2.81147</td>
<td>3.71449</td>
</tr>
<tr>
<td>2_x</td>
<td>8.30408</td>
<td>-2.80676</td>
<td>3.70839</td>
</tr>
<tr>
<td>3_x</td>
<td>8.20663</td>
<td>-2.77233</td>
<td>3.67504</td>
</tr>
<tr>
<td>4_x</td>
<td>8.47855</td>
<td>-2.60348</td>
<td>3.49892</td>
</tr>
<tr>
<td>5_x</td>
<td>8.45375</td>
<td>-2.60436</td>
<td>3.50027</td>
</tr>
</tbody>
</table>

where $M_{He} = \int_{V} \rho_{He} X_1 dV$ denotes the mass of He in the cavity of volume V, $X_1 = \rho Y_1 / \rho_{He}$ the helium volume fraction. The volumetric flow-rates $Q_{v}^{\Lambda} = \int_{\partial \Omega_{out}^{\Lambda}} u_1 d\sigma$, where $\Lambda = \{ \text{bot, top} \}$ and $\partial \Omega_{out}^{\text{bot}}, \partial \Omega_{out}^{\text{top}}$ denote the surface area of the bottom and top vent respectively.

> L2 norm relative error (conf 5_x is a reference)
Upper part of the cavity

- Lower cavity flow pattern: vertical mid \(xz\)-plane,

![Diagram showing flow patterns and velocity profiles](image)
Upper part of the cavity

- Lower cavity flow pattern: vertical mid xz-plane,

- Vertical yz-plane ($x = 2.95 \text{ cm}$) at the top vent surface: $< u_1 >_t \times$-horizontal velocity
CFD-PIV comparison

Conf 4_x

CFD

PIV

<table>
<thead>
<tr>
<th>x [cm]</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y [cm]</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>z [cm]</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

z = 2 cm

z = 3.5 cm

z = 4.5 cm

z = 5.5 cm

z = 7 cm

z = 14 cm

E. Saikali

ICHS 2017

Tuesday 12 September, 2017 11 / 20
CFD-PIV comparison

The image displays a comparison between CFD (Computational Fluid Dynamics) and PIV (Particle Image Velocimetry) results. The graphs show velocity profiles at different vertical positions (z) as indicated on the left side of the image:

- z = 2 cm
- z = 3.5 cm
- z = 4.5 cm
- z = 5.5 cm
- z = 7 cm
- z = 14 cm

The graphs on the right side illustrate the comparison, with red lines representing CFD data and black circles representing PIV data. The x-axis represents the horizontal distance (cm), and the y-axis shows the velocity magnitude (m/s). The color scale on the top left indicates the range of velocity values.

The diagram also includes a 3D perspective view of the flow field, indicating the z-axis and the x-y plane with a red and blue color scheme to highlight different regions of interest.
- Two distinct behaviors, small/higher concentrations, E and axis take the highest above $z \approx 6.2$ cm,
- max concentration at top matches well (29%), thicker layer predicted,
- Geometry dependent, entrainment/mixing process, jet bending effect . . .

[Bernard-Michel et al., 2017, Hunt and Linden, 1999, Saikali et al., 2017a]
LES resolution
Concluding remarks and discussion

Main conclusion

- Flow analysis: helium distribution, air entrainment, recirculating zones, . . .
- Influence of the outlet boundary condition: similarities and discrepancies,
- Convergence on the size of the exterior domain,
 - Modification of the helium distribution depending the domain size,
 - PIV validation,
- Max concentration predicted by theoretical model, but flow is not divided through a two-layer stratification (Hunt-Linden framework).

Work to be continued (in progress)
- Global validation with new PIV data covering all domain,
- DNS computation ($\eta = 1.75 \times 10^{-4}$ m, $\approx 120 \times 10^6$ cells, 1988 MPI procs) for turbulence analysis: from turbulence fluxes and TKE budget to Boussinesq hypothesis validation,

Perspectives
- Development of boundary conditions able to mimic the presence of an exterior domain,
- Increasing the cavity's height and/or increasing/decreasing the injection flow-rate in the objective to produce a two-layer stratification,
- Hydrogen-air cases.
Concluding remarks and discussion

Main conclusion

- Flow analysis: helium distribution, air entrainment, recirculating zones, . . .
- Influence of the outlet boundary condition: similarities and discrepancies,
- Convergence on the size of the exterior domain,
 - Modification of the helium distribution depending the domain size,
 - PIV validation,
- Max concentration predicted by theoretical model, but flow is not divided through a two-layer stratification (Hunt-Linden framework).

Work to be continued (in progress)

- Global validation with new PIV data covering all domain,
- DNS computation ($\eta = 1.75 \times 10^{-4}$ m, $\approx 120 \times 10^6$ cells, 1988 MPI procs) for turbulence analysis: from turbulence fluxes and TKE budget to Boussinesq hypothesis validation,

Perspectives

- Development of boundary conditions able to mimic the presence of an exterior domain,
- Increasing the cavity’s height and/or increasing/decreasing the injection flow-rate in the objective to produce a two-layer stratification,
- Hydrogen-air cases.
Thanks for your attention!
3D flow description

Helium volume fraction

Velocity magnitude
Comparison of helium and hydrogen releases in 1 m 3 and 2 m 3 two vents enclosures: Concentration measurements at different flow rates and for two diameters of injection nozzle.

Experimental measurements, cfd simulations and model for a helium release in a two vents enclosure.
In *Proceeding of the International Conference on Hydrogen Safety*.

Large-eddy simulation of a turbulent buoyant helium plume.
Bulletin of the American Physical Society, 53.

CEA TRUST-TrioCFD (2017).
TRUST-TrioCFD code version 1.7.4.

Vertical turbulent buoyant jets: a review of experimental data.

Characteristics of small vortices in a turbulent axisymmetric jet.

The fluid mechanics of natural ventilation-displacement ventilation by buoyancy-driven flows assisted by wind.

Müller, B. and Muller, B. (1999). Low mach number asymptotics of the navier-stokes equations and numerical implications.

110 seconds of physical time,
> time evolution of the velocity magnitude at a point in the middle of top vent, quas—is steady solution assumed to be reached at 70 seconds.