

## WP3 – Release and mixing: UU update D. Cirrone, D. Makarov, V. Molkov Online project meeting, 30<sup>th</sup> March 2020

Pre-normative REsearch for Safe use of Liquid HYdrogen



Air Liquide

**INERIS** 

## **UU - WP3 activities plan**



- Analysis of the similarity law for momentum dominated cryogenic jets for use in calculation of hazard distances: validation against SNL tests
- Analysis of the applicability of notional nozzle theory and volumetric release source concept for prediction of concentration decay in cryogenic under-expanded jets:
  - $\checkmark$  Low pressure releases (P < 10 bar): validation against SNL tests
  - High pressure releases (P > 10 bar): validation against ICESAFE and PRESLHY experiments performed by KIT (E3.1)
- Perform simulations of experiments on multi-phase releases:
  - Contemporary engineering tool for evaluation of mass flow rate from LH2 tank with inclusion of conjugate heat transfer: HSE experiments (E3.5)
- Studies on formation of cryogenic mixtures of H2/O2 and H2/air (connected to WP4-Ignition)

## **Release source modelling** Jet fire tests performed at KIT - ICEFUEL



The under-expanded jet theory developed at Ulster was employed to model cryogenic and warm hydrogen releases by KIT at ICEFUEL facility (Breitung et al., 2009).

| <b>Release conditions</b> |         |
|---------------------------|---------|
| Temperature, K            | 80, 290 |
| Pressure, bar             | 3 – 20  |
| Diameter, mm              | 2, 4    |



CFD simulations to investigate reasons for mass flow rate deviation:

- Losses and heat transfer in the release pipe
- Effect of cryogenic release temperature
- Calculate notional nozzle conditions for jet fires simulations (WP5)

3

# **Release source: CFD modelling**



#### **Problem formulation**



- Density based compressible explicit solver
- LES dynamic Smagorinsky-Lilly model
- Cylindrical domain with dimensions 7 cm (radius) x 18 cm (length)
- Hexahedral mesh with ~500 thousands CVs
- Inclusion of conjugate heat transfer in simulations



# Effect of inlet temperature on $\dot{m}$



#### **Simulation results**

Test with T=80 K P=14 bar measured at the cross.

| Case           | Mass flow rate, g/s |
|----------------|---------------------|
| CFD – Tin=80K  | 4.3                 |
| CFD – Tin=100K | 3.8                 |
| CFD – Tin=120K | 3.5                 |
| CFD – Tin=150K | 3.2                 |
| Experiment     | 3.3                 |
|                |                     |

- Heat transfer causes a 9% difference on the calculated mass flow rate
- Important: location of temperature sensor!



# Thank you for your attention!

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 779613.

